
NAME (please PRINT in large letters):

SECTION: 01 02 (circle one)

CMSC 27200 Theory of Algorithms
Last exam — 03-15-2015

The exam is closed book. Do not use notes.
The use of ELECTRONIC DEVICES is strictly forbidden.

Use the paper provided. Do not use your own paper. You may continue on
the reverse side of each sheet.

SHOW ALL YOUR WORK. Correct conclusions that come out of the
blue (details of calculation missing) will not receive credit.

Please be accurate and concise. When writing pseudocode, keep with sim-
ple instructions and notation, do not use notation specific to some program-
ming languages. Define your variables and comment on each line, what
is happening.
You do NOT need to prove correctness of your algorithms unless specifically
asked.

Warning: The extra-credit (XC) problems are underrated; do the ordinary
problems before you attempt the extra-credit problems.

This exam contributes 40% to your course grade.
The total point value of the ordinary (non-extra-credit) problems is 400
points. The extra-credit problems, as their name suggests, add to your score.

1



1. (14+12 points) (Growth rates)

(a) (Superpolynomial growth) Let f(n) be a function on the positive
integers. We say that f(n) grows superpolynomially if for all C > 0
we have f(n) ≥ nC for all sufficiently large n. (The threshold
for “suffiently large” depends on C.) Prove that if f(n) grows
superpolynomially then for all C > 0 we have nC = o(f(n)).
(Recall the little-oh notation: an = o(bn) if limn→∞ an/bn = 0.)

(b) (Intermediate growth) Find a function f(n) on the positive integers
such that (i) for every C > 0 we have nC = o(f(n)) and (ii) for
every c > 0 we have f(n) = o(exp(nc)). Here exp(x) denotes ex.
Prove that your function satisfies both conditions.

2



2. (Recurrent inequalities) Consider the following model of multiplication
of matrices with real entries: arithmetic operations (multiplication,
addition, subtraction) of real numbers has unit cost.

Strassen’s matrix multiplication algorithm reduces the problem of mul-
tiplying two n × n matrices to 7 instances of the half-size problem
(multiplying 7 pairs of n/2× n/2 matrices). The reduction is achieved
by performing a constant number of additions and subtractions of ma-
trices of size n× n and n/2× n/2 at a total cost of O(n2).

Let T (n) be the cost of multiplying two n × n matrices by Strassen’s
method. Observe that

T (n) ≤ 7T (n/2) +O(n2). (1)

(a) (12 points) Evaluate this recurrence. Show that T (n) = O(nβ)
for some positive real number β. Determine the smallest value of
β inferable from Eq. (1). Use the method of reverse inequalities.
Do not use the “Master Theorem.” You may assume that n is a
power of 2.

(b) (XC 8 points) Prove that your β is the smallest possible exponent
inferable from (1).

(c) (6 points) (Fibonacci recurrence) Let R(n) > 0 be a function on
positive integers. Assume R(n) ≤ R(n − 1) + R(n − 2) + O(n2).
Prove: R(n) = O(Fn) where Fn is the n-th Fibonacci number
(F0 = 0, F1 = 1, F (n) = F (n− 1) + F (n− 2)).

3



3. (12+8+10 points) (Generating random primes) Alice needs to generate
an n-bit random prime number. (Initial zeros are permitted.) She
performs the following experiment: she flips n coins; this produces a
random n-bit integer X. She checks X if is prime (“success”). She
repeats the experiment until she succeeds.

(a) What is the expected number of experiments she needs to per-
form? Give an exact expression in terms of the function π(x), the
number of primes ≤ x. Prove your answer.

(b) Asymptotically evaluate this expected value. State and use the
Prime Number Theorem.

(c) Is the expected number of trials polynomially bounded as a func-
tion of n, i. e., is it O(nc) for some constant c? Prove you answer
(and determine c if it exists).

4



4. (Independence number) Let G = (V,E) be an undirected graph with
n vertices. A subset S ⊆ V is independent if no pair of vertices in S
is adjacent. In other words, S is independent in G exactly if S is a
clique (complete subgraph) in the complement of G. The size of the
largest independent set is denoted α(G); this is called the independence
number of G. So for instance α(Kn) = 1 and α(Cn) = bn/2c where Cn
denotes the cycle of length n.

(a) (6 points) Finding the value of α(G) is an optimization problem.
State the corresponding decision problem (input, question). Let
IND denote this decision problem.

(b) (8 points) Prove that IND is NP-complete, using the NP-completeness
of CLIQUE, the decision version of the maximum clique problem.

(c) (20 points) Prove that α(G) can be computed in time O(Fn) where
Fn is the n-th Fibonacci number. Hint: build the independent set
S recursively. Pick a vertex v ∈ V ; consider the two cases: v ∈ S
and v /∈ S.

(d) (6 points) Suppose every vertex in G has degree ≤ 2. Find α(G)
in linear time. Describe your algorithm in unambiguous English,
no pseudocode needed. Give sufficient detail to justify the linear
time claim.

(e) (XC 15 points) Prove that α(G) can be computed in time O(σn)
where σ ≈ 1.381 is the positive root of the equation t4 = t3 + 1.
(Comment: recall that Fn = Θ(γn) where γ ≈ 1.618 so this is an
improvement over part (c).)

5



5. (16 points) (Local minimum) Let A[1 . . . n] be an array of real numbers.
We say that position i is a local minimum if A[i] is not greater than
either of its neighbors, i. e., A[i] ≤ A[i + 1] and A[i] ≤ A[i − 1] for
2 ≤ i ≤ n − 1 and A[1] ≤ A[2] if i = 1 and A[n] ≤ A[n − 1] if i = n.
Find a local minimum in O(lg n) queries to the array. State the best
constant hidden in the big-Oh notation that you can get. Describe your
algorithm in pseudocode.

6



6. (20 points) (Dijkstra with a double twist) We are given a weighted digraph
with a source vertex, G = (V,E, s, w) where s ∈ V is the source and
w : E → R is the weight function. All weights are non-negative. We
are also given a partition of the edges into “red,” “green,” “blue” edges:
E = R ∪G∪B where R∩G = R∩B = G∩B = ∅. For all vertices v ∈ V
find the minimum cost of reaching v from s along a path that uses at
most one red edge and at most one green edge. Your algorithm should
run in “Dijkstra time.” – Instruction: do not invent a new algorithm;
apply an algorithm studied in class to inputs other than G. Your job
is to construct the new inputs and to state how to use them. Describe
your construction and your algorithm in unambiguous English (with
mathematical formulas). No pseudocode required.

7



7. (Linear programming feasibility) Recall: The linear programming (LP)
feasibility problem takes as input a list L of linear inequalities of the
form

∑n
j=1 aijxj ≤ bi. (This is the i-th inequality.) The aij and bj

are the coefficients of L. We say that L is feasible if there exist real
numbers x1, . . . , xn that satisfy all the inequalities in L.

The integer LP (ILP) feasibility problem asks whether or not there is
a solution to this system in which the variables take integer values.

The (0, 1)-LP feasibility problem asks whether or not there is a solution
to this system in which the variables take values 0, 1 only.

(a) (10+10 points) Prove that the following LP is (a1) feasible but
(a2) not ILP-feasible (has no solution in integers):

x1 + 5x2 + 2x3 ≤ 4

2x1 − 2x2 + x3 ≤ 1

−2x1 − 2x2 − 2x3 ≤ −3

(b) (18 points) Karp-reduce 3-colorability of graphs to (0, 1)-LP fea-
sibility. Explanation: Given a graph G, you need to construct in
polynomial time an LP L(G) with integer coefficients such that G
is 3-colorable if and only if L(G) is (0, 1)-feasible.

(c) (5 points) Define the CLIQUE problem (the decision version of
the maximum clique problem). Clearly state the input and the
question asked.

(d) (XC 20 points) Karp-reduce CLIQUE to (0, 1)-LP feasibility. State
the number of variables in your LP as a function of the parameters
of the input graph. Clearly state what you need to prove about
the LP you construct.

8



8. (Complexity classes) Let NPC denote the class of NP-complete problems.
Prove:

(a) (15 points) If NPC ∩ P 6= ∅ then P = NP.

(b) (XC, 10 points) If NPC ∩ coNP 6= ∅ then NP = coNP.

(c) (XC, 15 points) If an NP-complete problem is Cook-reducible to a
problem in NP ∩ coNP then NP = coNP.

9



9. (8+6+15+5+15 points) (Jarńık vs. Dijkstra) Recall that Jarńık’s (a.k.a.
Prim’s) algorithm solves the min-cost spanning tree problem.

(a) State exactly the input that Jarńık’s algorithm takes; compare it
item by item with the input taken by Dijkstra’s algorithm. Pay
special attention to whether the graph is directed or undirected,
whether the weights need to be non-negative; whether the input
specifies a source node; connectivity issues.

(b) Describe the output of (b1) Dijkstra’s (b2) Jarńık’s algorithm

(c) Describe Jarńık’s algorithm in pseudocode. Define your variables.
Indicate where the code differs from Dijkstra’s. (Use the reverse
side of this sheet.) Even though not absolutely necessary, do use
the white/grey/black status indicators.

(d) State the three data structure operations used, and how many
times each was used (upper bound) in each algorithm

(e) Prove that Jarńık’s algorithm cannot be implemented to run in lin-
ear time. (“Implementation” refers to a specific realization of the
data structure operations.) Specifically, show that any implemen-
tation will require Ω(n log n) comparisons on certain connected
weighted graphs with n vertices and O(n) edges.

10



10. (16+8+8+8 points) (Loop invariants)

(a) Give an exact definition of a loop invariant. Include the defini-
tion of the configuration space. Make sure to state the domain
of your predicates and the domain and range of your functions.
Make it explicit to what loop you are referring and what role your
predicates and functions play in the loop.

(b) The body of Jarńık’s algorithm is a single while loop. For each
statement below, decide whether or not it is a loop invariant.
Prove your answers. (The vertices are denoted v1, . . . , vn; the
weight function is w, and c denotes the “current cost” function.)

(b1) c(v7) = min{w(u, v7) | u is a neighbor of v7}.
(b2) c(v7) = min{w(u, v7) | u is a black neighbor of v7}.
(b3) The quantity c(v7) cannot increase.

11



11. (5 + 8 points)

(a) Spell out the acronym “NP.”

(b) Prove: every problem in NP can be solved in time exp(nc) for
some costant c. (c depends on the problem.)

12. (20 points) (Sorting after preprocessing) Alice needs to sort n data by
comparisons. Bob, her assistant, helpfully arranges the data in a heap.
“I checked that the heap rule is not violated,” he assures her. Prove
that Alice still needs to make & n lg n comparisons (in the worst case).
(As always in this course, “lg” refers to base-2 logarithms.) – Warning.
This is NOT a problem about Heapsort. While the data are arranged
in a heap, Alice is free to compare any pair of data she chooses. The
role of the heap is that of a preprocessing: some pairs of data have
already been compared, she does not need to compare them. – Note
also that you are required to prove more than an Ω(n lg n) lower bound:
you need to show that asymptotically at least n lg n comparisons are
needed (i. e., more than (1− ε)n lg n for every ε > 0 and all sufficiently
large n). You will get partial credit for proving an Ω(n lg n) lower
bound.)

12



13. (12+12 points) (DFS and topological sort)

(a) Describe DFS in pseudocode.

(b) Given a digraph, either find a directed cycle or topologically sort
the vertices. Your algorithm must run in linear time. Use DFS.
Explain your algorithm in unambiguous English, no pseudocode
required. No proof required.

13



14. (20 points) (Edit distance) We transform a word (string of characters)
into another word using the following “edit” operations: delete, insert,
replace. For instance, here is how to turn “NAIVE” into “FANATIC:”

NAIVE - NAIVC - NAIC - NATIC - FNATIC - FANATIC.

The sequence of operations was REP,DEL,INS,INS,INS. The edit-distance
of two words is the minimum number of edit operations needed to turn
one word into the other. (If the above sequence of operations is optimal,
then the edit-distance of NAIVE and FANATIC is 5.)

Describe an algorithm which finds the edit-distance of two given words
in O(km) steps where k and m are the respective lengths of the two
input words.

Describe your algorithm in pseudocode. It should be very simple, no
more than a few lines. Name the algorithmic technique used. Define
the meaning of your variables. Half the credit goes for the clear
definition (the “brain” of your algorithm).

14



[15.] (10+8+8 points) (Euclid’s algorithm)

(a) Describe Euclid’s algorithm in pseudocode as a while loop; do
not use recurrence.

(b) State the loop invariant that proves correctness.

(c) Prove that the algorithm runs in polynomial time.

15


