
NAME (please PRINT in large letters):

SECTION: 01 02 (circle one)

CMSC 27200 Theory of Algorithms
First Midterm — 01-29-2015

The exam is closed book. Do not use notes.
The use of ELECTRONIC DEVICES is strictly forbidden.

Use the paper provided. Do not use your own paper. You may continue on
the reverse side of each sheet.

SHOW ALL YOUR WORK. Correct conclusions that come out of the
blue (details of calculation missing) will not receive credit.

Please be accurate and concise. When writing pseudocode, keep with sim-
ple instructions and notation, do not use notation specific to some program-
ming languages. Define your variables and comment in each line on what
is happening.

Warning: The extra-credit (XC) problems are underrated; do the ordinary
problems before you attempt the extra-credit problems.

This exam contributes 15% to your course grade.
The total point value of the ordinary (non-extra-credit) problems is 150
points. The extra-credit problems, as their name suggests, add to your score.

1

1. (a) (25 points; lose 5 points for each incorrectly sorted pair) (Asymp-
totic growth) List the 9 functions in the list below by their
asymptotic nondecreasing growth order. First identify functions
that have the same growth order (are in Θ relation with each
other), and then, from each block of functions with the same
growth order, put just one in your linear order. “lg” is to the
base 2, “ln” is to the base e.

Note: ln 2 ≈ 0.69.

n1/3, n1/2, n0.9, 5n, 2(lgn)1/2 , 2lnn, 2lgn, n/ lnn, n/ lg n

Use the “little-oh” notation: we say that f(n) = o(g(n))
(“f(n) is little-oh of g(n)”) if limn→∞ f(n)/g(n) = 0. For instance,
n3/2 = o(n2) and n! = o(nn) but n2 6= o(100n2 + 106).

So if a function f(n) precedes a function g(n) in your ordering
then you must have f(n) = o(g(n)).

Briefly justify the claimed relationship (Θ or little-oh) among con-
secutive functions on your list. The penalty for omitting a function
from your list is 8 points. If you list a function twice, we consider
only the first occurrence.

(b) (6 XC points) Place the function
4n(
2n
n

) in your list above. Prove

your answer.

2

2. (20 points) (Recurrence) Let T (n) be a function on the positive inte-
gers such that

(i) T (n) ≥ 0 for all n ≥ 1 and

(ii) T (n) ≤ 2T (dn/2e) + O(n)

Prove: T (n) = O(n lg n).

Use the method of reverse inequalities. (Do not use the Master The-
orem or any other theorem on recurrences not proved in class.) You
may assume that n is always a power of 2.

3

3. (12+15 points)

(a) (Merge) Given two sorted arrays A[1 . . . k] and B[1 . . . `] of real
numbers, describe in pseudocode how to merge them.
So the assumption is that A[1] ≤ A[2] ≤ · · · ≤ A[k] and
B[1] ≤ B[2] ≤ · · · ≤ B[`] and you need to output an array
C[1] ≤ C[2] ≤ · · · ≤ C[k + `] that includes each entry of the
arrays A and B. State the number of comparisons made by your
procedure.

(b) (k-way merge) Given k sorted arrays A1, . . . , Ak (of variable
lengths) of a total of n items, use heap to merge them in time
O(n log k). (So your output will be a sorted array of length n.)
Describe your algorithm in unambiguous English, pseudocode is
not required. Justify the time bound. (You get half the credit if
you solve the problem without using a heap.)

4

4. (8+16+4+18 points) (Dijkstra’s algorithm)

(a) State the computational task solved by Dijkstra’s algorithm. Be
exact in specifying the input and the output.

(b) Describe Dijkstra’s algorithm in pseudocode. Define your vari-
ables.

(c) Suppose we modify the “RELAX(u, v)” routine so that it will try
to update the cost of v even if v is black. Will this change the
outcome? Reason your answer. (Note added after the test: this
problem was not intended to ask you to prove the correctness
of Dijkstra’s algorithm but rather to take that fact for granted
and then answer the question of what happens if we modify the
algorithm as above.)

(d) Give an example of a weighted DAG (directed acyclic graph) with
some negative edges where even this modified version of Dijkstra’s
algorithm fails to find the optimum costs. Make your example as
small as you can (in terms of the number of edges). You do not
need to prove that your example is the smallest. Describe the
progress of your algorithm in a table, stating the status, current
cost, and parent node of each node in each phase (each execution
of the while loop).

5

5. (10 XC points) (Uphill-downhill Dijkstra) We say that a sequence
of real numbers in unimodal if the sequence is nondecreasing until it
reaches its maximum (ascent phase) and then it is nonincreasing (de-
scent phase). For instance, these sequences of single-digit integers are
unimodal: 1562, 5779998331, 34789, or 99933333. (Note that we allow
sequences that are monotone; either the ascent or the descent can have
length zero.) The sequences 656, 4325, 12121 are not unimodal.

Consider a weighted digraph G = (V,E,w) with non-negative edge
weights w(u, v) ≥ 0 and a source s ∈ V with the following additional
information: every node v has an elevation e(v) (specified as part of
the input). We say that a path is unimodal if the sequence of nodes
along the path have unimodal elevations (first we go uphill and then
downhill). Find the minimum cost of unimodal paths from a given
source vertex s to a given target vertex t in “Dijkstra time,” i. e., time
O((|V | + |E|) log |V |) if we use the heap implementation of priority
queues.

Describe your algorithm in unambiguous English, no pseudocode re-
quired. Justify the timing.

6

6. (14 points) (Switchover) Let A[1 . . . n] be a (0, 1)-array (every entry is
0 or 1). Assume A[1] = 0 and A[n] = 1. Design an algorithm that finds
a value i such that A[i] = 0 and A[i+1] = 1 (1 ≤ i ≤ n−1). You can

access the array by making queries of the form A[i]
?
= 0; the answer

you receive to each query is “Yes” or “No.” Each query carries unit
cost; all other operations (bookkeeping, computation) are free. Your
goal is to minimize the cost. Your algorithm should work with cost
lg n + O(1). Describe your algorithm in clear pseudocode. Name the
method used.

7

7. (18 points) (Interval sum) We are given an array A[1 . . . n] of real
numbers. The sum of the interval [i, j] is the quantity S[i, j] :=

∑j
k=iA[k].

Find the maximum interval sum

Smax = max
1≤i,j≤n

S[i, j].

Find this value in linear time (i. e., the number of operations should
be O(n)). Describe your solution in elegant and simple pseudocode.
(Note: you are not required to output the interval with the maximum
sum, just the value of the maximum sum.) Observe the following con-
vention:

Convention: If j < i, we say that the interval [i, j] is empty ; the sum
of the empty interval is zero. Empty intervals are admitted in the
problem. Therefore Smax ≥ 0 even if all the A[i] are negative.

Instructions. Use dynamic programming. Bear in mind that in dy-
namic programming exercises, half the credit goes for the clear and
simple definition of the array of problems you use (the “brain” of the
solution). Do not confuse the “brain” of the solution with the “heart”
of the solution (the recurrence). Explain the meaning of your vari-
ables! Elegance and simplicity count. Do not use notation specific to
some programming language, just the generic pseudocode instructions
appearing in handouts.

8

8. (10 XC points) Consider the following game against the bank. The bank
stores a number V (your “vitality” in the game); initially, V is set to
V = n. Here is the process:

while V > 0
roll die
if die < 6, win V dollars from the bank
else (die = 6) V := bV/2c

end(while)

What is the fair value of entering this game, i. e., what is your expected
win? Your answer should be a very simple formula in terms of n. Prove
your answer. You may assume n is a power of 2.

9

