
Algorithms – CMSC-27200
Repeated squaring

Instructor: László Babai
Last updated: 02-16-2015

Let a,m be integers, m 6= 0. Recall that (a mod m) denotes the smallest
non-negative remainder of the division of a by m. In other words, let a =
mq+r where 0 ≤ r ≤ |m|−1. This r is unique and is denoted r = (a mod m).

Problem (modular exponentiation): Calculate (ab mod m) where a, b,m
are integers, a,m ≥ 1, b ≥ 0.

Solution: the method of repeated squaring.

Pseudocode A.

0 Initialize: X := 1, B := b, A =: (a mod m)
[X is the “accumulator” that collects the partial results]

1 while B ≥ 1 do
2 if B odd then B := B − 1, X := (AX mod m)
3 else B := B/2, A := (A2 mod m)
4 end(while)
5 return X

The correctness of the algorithm follows from the following loop invariant
(verify!)

XAB ≡ ab mod m.

The efficiency of the algorithm follows from the observation that after
every two rounds, the value of B is reduced to less than half. (Prove!) This
implies that the number of rounds is ≤ 2n where n is the number of bits
(binary digits) of b. Moreover, we never deal with integers greater than m2.
Therefore, if a, b,m each have n bits (initial zeros permitted) then every
number involved has ≤ 2n bits and the total number of bit-operations is
O(n3) (using the schoolbook multiplication/division method) so this is a
polynomial-time algorithm. (Recall that the comparison is made with the
bit-length of the input, which in this case is 3n.)

We now describe an alternative, recursive implementation. The non-recursive
code is preferred.

Pseudocode B: recursive.

0 procedure f(a, b,m) = (ab mod m) (b ≥ 0, a,m ≥ 1)
1 if b = 0 then return 1
2 elseif b odd then return (a · f(a, b− 1,m) mod m)
3 elseif b even then return f((a2 mod m), b/2,m)

1

