Algorithms – CMSC-27200 Repeated squaring

Instructor: László Babai Last updated: 02-16-2015

Let a, m be integers, $m \neq 0$. Recall that $(a \mod m)$ denotes the smallest non-negative remainder of the division of a by m. In other words, let a = mq+r where $0 \leq r \leq |m|-1$. This r is unique and is denoted $r = (a \mod m)$.

Problem (modular exponentiation): Calculate $(a^b \mod m)$ where a, b, m are integers, $a, m \ge 1, b \ge 0$.

Solution: the method of repeated squaring.

Pseudocode A.

The **correctness** of the algorithm follows from the following *loop invariant* (verify!)

 $XA^B \equiv a^b \mod m.$

The **efficiency** of the algorithm follows from the observation that after every two rounds, the value of B is reduced to less than half. (Prove!) This implies that the number of rounds is $\leq 2n$ where n is the number of bits (binary digits) of b. Moreover, we never deal with integers greater than m^2 . Therefore, if a, b, m each have n bits (initial zeros permitted) then every number involved has $\leq 2n$ bits and the total number of bit-operations is $O(n^3)$ (using the schoolbook multiplication/division method) so this is a *polynomial-time algorithm*. (Recall that the comparison is made with the bit-length of the input, which in this case is 3n.)

We now describe an alternative, recursive implementation. The non-recursive code is preferred.

Pseudocode B: recursive.

0 procedure $f(a, b, m) = (a^b \mod m)$ $(b \ge 0, a, m \ge 1)$

- 1 if b = 0 then return 1
- 2 elseif b odd then return $(a \cdot f(a, b-1, m) \mod m)$
- 3 elseif b even then return $f((a^2 \mod m), b/2, m)$