Algorithms - CMSC-27200

 Repeated squaring

 Repeated squaring}

Instructor: László Babai

Last updated: 02-16-2015

Let a, m be integers, $m \neq 0$. Recall that $(a \bmod m)$ denotes the smallest non-negative remainder of the division of a by m. In other words, let $a=$ $m q+r$ where $0 \leq r \leq|m|-1$. This r is unique and is denoted $r=(a \bmod m)$.

Problem (modular exponentiation): Calculate $\left(a^{b} \bmod m\right)$ where a, b, m are integers, $a, m \geq 1, b \geq 0$.

Solution: the method of repeated squaring.
Pseudocode A.
$0 \quad$ Initialize: $X:=1, B:=b, A=:(a \bmod m)$
[X is the "accumulator" that collects the partial results] while $B \geq 1$ do if B odd then $B:=B-1, X:=(A X \bmod m)$ else $B:=B / 2, A:=\left(A^{2} \bmod m\right)$
end(while)
return X

The correctness of the algorithm follows from the following loop invariant (verify!)

$$
X A^{B} \equiv a^{b} \bmod m
$$

The efficiency of the algorithm follows from the observation that after every two rounds, the value of B is reduced to less than half. (Prove!) This implies that the number of rounds is $\leq 2 n$ where n is the number of bits (binary digits) of b. Moreover, we never deal with integers greater than m^{2}. Therefore, if a, b, m each have n bits (initial zeros permitted) then every number involved has $\leq 2 n$ bits and the total number of bit-operations is $O\left(n^{3}\right)$ (using the schoolbook multiplication/division method) so this is a polynomial-time algorithm. (Recall that the comparison is made with the bit-length of the input, which in this case is $3 n$.)

We now describe an alternative, recursive implementation. The non-recursive code is preferred.

Pseudocode B: recursive.
0 procedure $f(a, b, m)=\left(a^{b} \bmod m\right) \quad(b \geq 0, a, m \geq 1)$
$1 \quad$ if $b=0$ then return 1
2 elseif b odd then return $(a \cdot f(a, b-1, m) \bmod m)$
$3 \quad$ elseif b even then return $f\left(\left(a^{2} \bmod m\right), b / 2, m\right)$

