
Algorithms – CMSC 37200
The Method of Reverse Inequalities:
Evaluation of Recurrent Inequalities

László Babai

Updated 01-21-2015

In this handout, we discuss a typical situation in the analysis of algo-
rithms: the number of steps required by the algorithm satisfies some recur-
rent inequality; from this we want to infer an upper bound on the order
of magnitude of the number of steps, and we seek the best upper bound
(in term of rate of growth) that can be inferred from the given recurrent
inequality.

We explain how to do this using the method of reverse inequalities. We il-
lustrate the method on two recurrences that occur in the analysis of “Divide-
and-Conquer” algorithms.

Our first recurrence arises from the Karatsuba algorithm to multiply
integers and to multiply polynomials. Both algoriothms lead to the same
recurrent inequality.

For simplicity we assume n = 2k. Let f(n) be the number of real number
operations (multiplication, addition, subtraction) and bookkeeping opera-
tions required by the Karatsuba algorithm to multiply two polynomials of
degree ≤ n− 1. The inequality then is:

f(n) ≤ 3f(n/2) +O(n). (1)

Let us first ignore the O(n) term. Then we have f(2k) ≤ 3f(2k−1), from
which it follows by easy induction on k that f(2k) ≤ 3kf(1). Now 3k = (2k)α

wher α = log 3 ≈ 1.585, so we have f(n) ≤ f(1)nα = O(nα) (because f(1)
is a constant).

Let us now consider the full inequality (1). Somewhat surprisingly, it
turns out that we shall still have f(n) = O(nα).

Theorem 1. If the function f(n) ≥ 0 satisfies inequality (1) then f(n) =
O(nα) where α = log 3 ≈ 1.585.

The big-Oh notation is ill-suited for evaluation in a recurrence, so we make
the O(n) term explicit by replacing it by Cn where C is an unspecified
constant. So we have

f(n) ≤ 3f(n/2) + Cn. (2)

1



Our strategy is to guess a function g(n) that satisfies the inequalities

g(n) ≥ 3g(n/2) + Cn and g(1) ≥ f(1). (3)

Note that the inequality g(n) ≥ 3g(n/2) +Cn goes in the opposite direction
than inequality (2) (hence the name of the method) and this is crucial for
our inductive argument.

Theorem 2. Suppose the function f(n) satisfies Eq. (2) and the function
g(n) satisfies Eq. (3). Then, for all all values n that are powers of 2, we
have f(n) ≤ g(n).

Proof. Let n = 2k. We need to show f(2k) ≤ g(2k) for all k. We proceed
by induction on k.
Base case. For k = 0 we need f(1) ≤ g(1) which is true by the second
inequality in Eq. (3).
Inductive step. Let now k > 0 and assume the inequality f(2`) ≤ g(2`) holds
for all ` < k (Inductive Hypothesis). We have

f(2k) ≤ 3f(2k−1) + C2k ≤ 3g(2k−1) + C2k ≤ g(2k). (4)

Here the first inequality is Eq. (2), the second is true by the Inductive
Hypothesis, and the third by Eq. (3).

Our next job is to guess the function g(n). Our target is g(n) = O(nα)
where α = log 3, so let us try to find g(n) in the form of Anα for some
constant A that we may determine later.

We need g(n) ≥ 3g(n/2) + Cn. In fact if we choose g(n) = Anα then
g(n) = 3g(n/2) (verify!) so the desired inequality never holds. But the
nature of the failure suggests that adjusting our guess at g(n) with a linear
term may succeed.

Let us therefore try to find g(n) in the form g(n) = Anα +Bn for some
constants A and B.

For our choice to be good, we need to be able to find values of the
constants A and B such that Eq. (3) holds. In other words, we need

Anα +Bn ≥ 3 (A(n/2)α +Bn/2) + Cn (5)

for all n and we need
A+B ≥ f(1). (6)

to cover both parts of Eq. (3).
We have two degrees of freedom, being free to choose both A and B.

2



Observing that nα = 3(n/2)α (by the definiotn of α = log 3), inequal-
ity (5) reduces to

Bn ≥ 3Bn/2 + Cn,

i. e.,
B ≤ −2C.

It may be surprising at first that we are forced to give B a negative
value. Let us choose B := −2C (the “least negative” value permitted); then
inequality (5) is satisfied.

Note that this holds regardless of the value of A. Next we invoke the
other degree of freedom we have: we now set the value of A sufficiently large
to satisfy the initial value condition (6): A+B ≥ f(1), i. e., A ≥ f(1)−B =
f(1) + 2C. The smallest value of A that satifies this is A = f(1) + 2C. So
we choose

A = f(1) + 2C and B = −2C. (7)

With this choice of the constants A and B, both conditions in Eq. (3) hold
and therefore f(n) ≤ g(n) = Anα − 2Cn ≤ Anα = O(nα). This concludes
the proof of Theorem 1. �

How do we know that f(n) = O(nα) is the best possible upper bound on
f(n) inferable from the recurrence (1)? The answer is simple: the function
f(n) = nα satisfies (1).

Let us now consider the recurrence

t(n) ≤ 2t(n/2) + n (8)

with the initial value t(1) = 0. This recurrence arises in the study of
MERGE-SORT; t(n) denotes the number of comparisons made when we
sort a list of n data.

Theorem 3. If the function t(n) ≥ 0 satisfies inequality (8) then
f(n) ≤ n log n where log is to the base 2.

In order to apply the method of reverse inequalities to evaluating this
recurrence, we need to guess a function g(n) such that

g(n) ≥ 2g(n/2) + n and g(1) ≥ 0. (9)

Exercise 4. Suppose the function t(n) satisfies Eq. (8) and the function
g(n) satisfies Eq. (9). Then, for all all values n that are powers of 2, we have
t(n) ≤ g(n).

3



Now g(n) is easy to guess: g(n) = n log n satisfies Eq. (9) (verify!). This
proves Theorem 3. �

Exercise 5. Suppose the function t(n) ≥ 0 satisfies the condition

t(n) ≤ 2t(n/2) +O(n). (10)

Prove: t(n) = O(n log n).

Exercise 6. Assume f(n) ≥ 0 satifies the inequality

f(n) ≤ 3f(bn/2c) +O(n). (11)

Prove: f(n) = O(nα) where α = log 3. Prove the required upper bound for
all values of n, not only for powers of 2.

Exercise 7. Assume f(n) ≥ 0 satifies the inequality

f(n) ≤ 3f(dn/2e) +O(n). (12)

Prove: f(n) = O(nα) where α = log 3. Prove the required upper bound for
all values of n, not only for powers of 2.

Exercise 8. Assume T (n) ≤ T (0.2n) + T (0.7n) +O(n). Prove:
T (n) = O(n). (This recurrence arises in analysing a linear-time algorithm
for the median.) (a) Ignore rounding. (b) Don’t ignore rounding.

4


