
Algorithms – CMSC-27200

Loop invariants

László Babai

Last updated 2-9-2015 at 2:30 am

Given an algorithm, a configuration is an assignment of values to each
variable. (In this discussion, the input values such as the weights of the
edges in Dijkstra’s algorithm that remain constant throughout the algorithm
are not variables.) A configuration is feasible if it can actually occur during
the execution of the algorithm. Let C denote the set of all configurations,
whether feasible or not. We refer to C as the configuration space.

A predicate over a set A is a Boolean function f : A→ {0, 1} (1: “true,”
0: “false”). A transformation of a set A is a function g : A→ A.

Let a ∈ A. The following statements are synonymous:

• the predicate f is true for a;

• the predicate f holds for a;

• the element a satisfies the predicate f ;

• f(a) = 1 .

Let P and R be predicates over the configuration space C and let T be a
set of instructions, viewed as a transformation of C. Consider the loop

while P do T (1)

We say that R is a loop invariant for this loop if for all configurations
X ∈ C the following inference is correct:

P (X) &R(X) ⇒ R(T (X)). (2)

In other words, if the configuration X satisfies the predicate R then the
updated configuration T (X), obtained by legally executing the loop instruc-
tions, also satisfies R. An execution of the loop instructions on a configura-
tion X is legal if X satisfies the loop condition P .

Note that the highlighted statement (2) has to hold even for infeasible
configurations. This is analogous to chess puzzles: when showing that a
certain configuration leads to checkmate in two moves, you do not investigate
whether or not the given configuration could arise in an actual game.

We shall see (esp. in Ex. 1 below) that a loop invariant R acts as the
inductive hypothesis in an inductive proof of the correctness of the algorithm
and proving that R is a loop invariant is the induction step of the proof.

1

Let T k(X) denote the configuration obtained from X ∈ C after executing
the instruction set T k times; let T 0(X) = X.

Exercise 1. Prove: if R is loop invariant for the loop (1) and P (T i(X))
holds for all i ≤ k−1 and R(X) holds then R(T k(X)) holds. In other words,
if the loop invariant is true for a configuration then it remains true after any
number of legal executions of the loop instructions.

Now we consider how to build complex loop invariants out of simpler predi-
cates.

Exercise 2. Prove: if R1 and R2 are loop invariants for the loop (1) then
R1 &R2 is also a loop invariant for (1).

Relative loop invariants. Let R1 and R2 be predicates over the con-
figuration space. We say that R2 is a loop invariant modulo R1 if for all
configurations X ∈ C the following inference is correct:

P (X) &R1(X) & R2(X) ⇒ R2(T (X)). (3)

In other words, we only require R2 to satisfy Eq. (2) for those configurations
X that satisfy R1. Other terms used to describe this circumstance: R2 is a
loop invariant assuming R1 or relative to R1.

Exercise 3. Prove: if R1 is a loop invariant for the loop (1) and R2 is a loop
invariant modulo R1 for (1) then R1 &R2 is a loop invariant for (1).

Analysis of Dijkstra’s algorithm. Please consult the handout on the
particular version of Dijkstra’s algorithm we analyze here.

A configuration for Dijkstra’s algorithm consists of a status value (white,
grey, black), a cost value (a real number or ∞), and a parent link (possibly
NIL) for each vertex, and a set Q (the priority queue; here we treat it as a
set of nodes; the key on which priority is based is the cost).

The body of Dijkstra’s algorithm (i. e., the part of the algorithm after the
initialization of the variables) consists of iterations of a single “while” loop.
The loop condition is “Q 6= ∅.” Below, loop invariance refers to this while
loop.

Consider the following statements:

R1 : (∀u ∈ V)(u ∈ Q if and only if u is grey)

R2 : (∀u ∈ V)(if u is white then c(u) =∞).

R3 : (∀u, v ∈ V)(if u is black and v is not black then c(u) ≤ c(v)).

R4 : (∀v ∈ V)(c(v) is the minimum weight among all s → · · · → v paths
that pass through black vertices only).

2

(We say that the path s = v0 → v1 → · · · → vk = v passes through black
vertices only if for 0 ≤ i ≤ k − 1, the vertex vi is black. The vertex v may
have any status. The weight of the path is the sum

∑k
i=1 w(vi−1, vi). If P

denotes this path then we write w(P) to denote its weight.)

Exercise 4. Prove that R1 and R2 are loop invariants.

Exercise 5. Consider the following statement:

R∗
2 : (∀u ∈ V)(u is white if and only if c(u) =∞).

Prove that (a) R∗
2 is not a loop invariant; but (b) R∗

2 is a loop invariant
modulo R1.

Exercise 6. Prove that R3 is a loop invariant modulo R1 &R2.

Warning: As in class, this is a non-trivial proof; several cases need to be
handled separately. The solution to this exercise has been added at the end
of this document.

Exercise 7. Prove that R4 is not a loop invariant modulo R1 &R2. (We
need R3.)

Explanation. You need to construct a weighted directed graph with nonneg-
ative weights, a source, and an assignment of values to each variable (parent
links, status colors, current cost values, priority queue) such that R1&R2&R4

holds for your configuration and your configuration satisfies the loop condi-
tion Q 6= ∅, but R4 will no longer hold after executing Dijkstra’s while loop.
Your graph should have very few vertices.

Exercise 8. Prove that R4 is a loop invariant modulo R1 &R2 &R3.

Warning: Again, as in class, this is a non-trivial proof; several cases need to
be handled separately. The solution to this exercise has been added at the
end of this document.

Exercise 9. Infer from the exercises above that Dijkstra’s algorithm is
correct. (Of course Exercises 5 and 7 are not needed.)

This is a very simple exercise. The essence of the proof of Dijkstra’s correct-
ness is in Exercises 6 and 8.

3

Solution to Exercise 6.

We need to analyze what happens during an execution of the while loop.
Every variable has an “in” and an “out” value: its value before the beginning
of the current execution of the loop and its value after the end of the current
execution of the loop. We shall omit the phrase “before the beginning/after
the end of the current execution of the loop” and simply say that a statement
is true “before” and/or “after.” We say something happens “currently” if it
happens during the current execution of the loop.

Let Bin denote the set of black vertices “before” and Bout the set of black
vertices “after.” Let u denote currently explored vertex, i. e., the vertex
extracted from Q at the beginning of the current execution of the loop. So
statusin(u) = grey and statusout(u) = black, and Bout = Bin ∪ {u}.

Let w ∈ Bout and v ∈ V \Bout. We need to show that cout(w) ≤ cout(v).

Observation A. cout(w) = cin(w) and cout(u) = cin(u).

Proof: The loop does not change the cost of any initially black vertex, nor
does it change the cost of u. � (Obs. A)

Observation B. cin(w) ≤ cin(u).

Proof: Case B1. w = u. In this case cin(w) = cin(u).

Case B2. w 6= u. In this case w ∈ Bin. On the other hand u /∈ Bin. Therefore
cin(w) ≤ cin(u) because R3 was true “before.” � (Obs. B)

Observation C. cin(u) ≤ cin(v).

Proof: We know that v /∈ Bout. It follows that v /∈ Bin, i. e., statusin(v) 6=
black. So we have two cases to consider.

Case C1: statusin(v) = white. Then cin(v) = ∞ by R2; therefore cin(u) ≤
cin(v).

Case C2: statusin(v) = grey. Then v ∈ Qin by R1 and therefore cin(v) was
one of the keys with which cin(u) was compared when u was extracted, so
again cin(u) ≤ cin(v). � (Obs. C)

Claim D. cin(u) ≤ cout(v).

Proof.

Case D1. cout(v) = cin(v) (i. e., the cost of v is not reduced during the current
execution of the loop). In this case we are done by Observation C.

Case D2. cout(v) 6= cin(v), i. e., the cost of v is reduced during the execution
of the loop. This means (u, v) ∈ E and cout(v) = cin(u) +w(u, v) ≥ cin(u), as
desired. Note that the last inequality depended on the assumption that the
weights are non-negative. � (Claim D)

Finally, putting all this together, we see that

4

cout(w)
(A)
= cin(w)

(B)

≤ cin(u)
(D)

≤ cout(v). This completes the proof of the
desired inequality cout(w) ≤ cout(v). � (Ex. 6)

Exercise 10. Where did this proof use

• R1

• R2

• the assumption that R3 was true “before”

• that the edges have non-negative weights ?

Did the proof use Observation C ?

* * *

Solution to Exercise 8.

R4 asserts two things. First, that

R4a : (∀v ∈ V)(if v is not white then there exists an s→ · · · → v path P
that passes through black vertices only, such that c(v) = w(P)).

Second, it says

R4b : (∀v ∈ V)(if P is an s → · · · → v path that passes through black
vertices only then c(v) ≤ w(P)).

Exercise 11. Prove that R4a is a loop invariant modulo R1 &R2.

Hint: Prove that the following is a loop invariant modulo R1 &R2.

R4c : (∀v ∈ V)(if v 6= s and v is not white then p(v) is black).

So in order to solve Exercise 8, we only need to prove that R4b is a loop
invariant modulo R1 &R2 &R3 &R4a.

Consider a path s = v0 → v1 → · · · → vk = v that passes through black
vertices only in the configuration “after.” The stipulation that this happens
“after” allows P to pass through u, the vertex currently being explored.

We need to show that cout ≤ w(P).

Proof.

5

Case 1: u /∈ P . In this case cin(v) ≤ w(P) because R4 is assumed to
hold “before.” But cout(v) ≤ cin(v) (costs can only go down) so the desired
inequality, cout ≤ w(P), follows. � (Case 1)

Case 2: u ∈ P . For i ≤ j, let P [vi, vj] denote the segment of P from vi to vj.

Observation E. If i ≤ j ≤ ` then w(P [vi, v`]) = w(P [vi, vj]) + w(P [vj, v`]).

Clear. No variables are involved in this statement. � (Obs. E)

Observation F. cin(u) ≤ w(P [s, u]).

Proof: Follows from the assumption of R4b “before.” � (Obs. F)

Let now z denote the last vertex of P before reaching v.

Case 2a: z = u. In this case we have (u, v) ∈ E (the last step of P).

Therefore cout(v) ≤ cin(u) + w(u, v)
(F)

≤ w(P [s, u]) + w(u, v)
(E)
= w(P). � (2a)

Case 2b: z 6= u. In this case z ∈ Bin while u /∈ Bin; therefore

cin(z) ≤ cin(u) (4)

by R3. By R4a, there is a path T through Bin such that cin(z) = w(T). Let
T ∗ be the s → · · · → z → v path obtained by adding the (z, v) edge to T .
Now

cout(v) ≤ w(T ∗) (5)

because u /∈ T ∗ so this case falls under Case 1.

On the other hand,

w(T) = cin(z)
Eq.(4)

≤ cin(u)
R4b before

≤ w(P [s, u]) ≤ w(P [s, z]), (6)

where the last inequality follows from Obs. E and the non-negativity of the
edge weights. Finally,

cout(v)
Eq.(5)

≤ w(T ∗) = w(T) + w(z, v)
Eq.(6)

≤ w(P [s, z]) + w(z, v) = w(P),
justifying the cout(v) ≤ w(P) claim. � (Case 2b)

This completes the proof of the loop invariant R4b and thereby R4 (modulo
R1 &R2 &R3 &R4a). � (Ex. 8)

Exercise 12. Ask and answer the questions analogous to Exercise 10 re-
garding this proof.

6

