Algorithms - Instructor: László Babai

Dynamic programming: the knapsack problem

The input of the "Knapsack Problem" is a list $\left[w_{1}, \ldots, w_{n}\right]$ of weights, a list $\left[v_{1}, \ldots, v_{n}\right]$ of values, and a weight limit W. All these numbers are positive reals.

The problem is to find a subset $S \subseteq\{1, \ldots, n\}$ such that the following constraint is observed:

$$
\begin{equation*}
\sum_{k \in S} w_{k} \leq W . \tag{1}
\end{equation*}
$$

The objective is to maximize the total value under this constraint:

$$
\begin{equation*}
\max \leftarrow \sum_{k \in S} v_{k} \tag{2}
\end{equation*}
$$

Theorem. Under the assumption that the weights are integers (but the values are real), one can find the optimum in $O(n W)$ operations (arithmetic, comparison, bookkeeping).

The solution illustrates the method of "dynamic programming." The idea is that rather than attempting to solve the problem directly, we embed the problem in an $n \times W$ array of problems, and solve those problems successively. The following definition is the brain of the solution.

For $0 \leq i \leq n$ and $0 \leq j \leq W$, let $m[i, j]$ denote the maximum value of the knapsack problem restricted to $S \subseteq\{1, \ldots, i\}$, under weight limit j.

The heart of the solution is the following recurrence.

$$
m[i, j]=\max \left\{m[i-1, j], \quad v_{i}+m\left[i-1, j-w_{i}\right]\right\} .
$$

Explanation: if in the optimal solution $i \notin S$ then $m[i, j]=m[i-1, j]$; otherwise we gain value v_{i} and have to maximize from the remaining objects under the remaining weight limit $j-w_{i}$ (assuming $\left.j \geq w_{i}\right)$. The optimum will be the greater of these two values.

It should also be clear that $m[0, k]=m[k, 0]=0$ for all $k \geq 0$. With this initialization, a double for-loop fills in the array of values $m[i, j]$:

```
    Initialize (lines 1-6):
\(1 \quad\) for \(i=0\) to \(n\)
\(2 \quad m[i, 0]:=0\)
3 end
\(4 \quad\) for \(j=1\) to \(W\)
\(5 \quad m[0, j]:=0\)
6 end
    Main loops:
\(7 \quad\) for \(i=1\) to \(n\)
\(8 \quad\) for \(j=1\) to \(W\)
                if \(j<w_{i}\) then \(m[i, j]:=m[i-1, j] \quad\) (* item \(i\) cannot be selected \({ }^{*}\) )
                else \(m[i, j]:=\) as in equation \(\bigcirc\) (* heart of solution *)
            end
        end
        return \(m[n, W]\)
```

The statement inside the inner loop expresses the value of the next $m[i, j]$ in terms of values already known so the program can be executed.

The required optimum is the value $m[n, W]$. Evaluating equation \triangle requires a constant number of operations per entry, justifying the $O(n W)$ claim.

