
Algorithms – Instructor: László Babai
Dynamic programming: the knapsack problem

The input of the “Knapsack Problem” is a list [w1, . . . , wn] of weights, a list [v1, . . . , vn] of values,
and a weight limit W . All these numbers are positive reals.

The problem is to find a subset S ⊆ {1, . . . , n} such that the following constraint is observed:∑
k∈S

wk ≤W. (1)

The objective is to maximize the total value under this constraint:

max←
∑
k∈S

vk. (2)

Theorem. Under the assumption that the weights are integers (but the values are real), one can
find the optimum in O(nW ) operations (arithmetic, comparison, bookkeeping).

The solution illustrates the method of “dynamic programming.” The idea is that rather than
attempting to solve the problem directly, we embed the problem in an n ×W array of problems,
and solve those problems successively. The following definition is the brain of the solution.

For 0 ≤ i ≤ n and 0 ≤ j ≤ W , let m[i, j] denote the maximum value of the knapsack problem
restricted to S ⊆ {1, . . . , i}, under weight limit j. ♣

The heart of the solution is the following recurrence.

m[i, j] = max{m[i− 1, j], vi + m[i− 1, j − wi]}. ♥
Explanation: if in the optimal solution i 6∈ S then m[i, j] = m[i− 1, j]; otherwise we gain value vi
and have to maximize from the remaining objects under the remaining weight limit j−wi (assuming
j ≥ wi). The optimum will be the greater of these two values.

It should also be clear that m[0, k] = m[k, 0] = 0 for all k ≥ 0. With this initialization, a double
for-loop fills in the array of values m[i, j]:

Initialize (lines 1–6):
1 for i = 0 to n
2 m[i, 0] := 0
3 end
4 for j = 1 to W
5 m[0, j] := 0
6 end

Main loops:
7 for i = 1 to n
8 for j = 1 to W
9 if j < wi then m[i, j] := m[i− 1, j] (* item i cannot be selected *)
10 else m[i, j] := as in equation ♥ (* heart of solution *)
11 end
12 end
13 return m[n,W ]

The statement inside the inner loop expresses the value of the next m[i, j] in terms of values
already known so the program can be executed.

The required optimum is the value m[n,W ]. Evaluating equation ♥ requires a constant number
of operations per entry, justifying the O(nW ) claim. Last updated 1-22-2014


