Algorithms – CMSC-27200 The "Greedy matching" problem László Babai

A matching in a graph G = (V, E) is a set $M \subseteq E$ of pairwise disjoint edges. The size of a matching is the number of edges in M. The matching number $\nu(G)$ is the maximum size of a matching in G. For instance, $\nu(K_n) = \lfloor n/2 \rfloor$ and $\nu(K_{r,s}) = \min\{r, s\}$ (verify these to make sure you understand the definition!).

A matching M is maximal if it cannot be extended, i.e., if there is no matching that properly contains M.

A matching M is maximum if $|M| = \nu(G)$.

Note that every maximum matching is maximal but not conversely (verify!).

We wish to estimate $\nu(G)$ using a greedy approach. It will turn out that the worst error we can make in doing so is a factor of 2.

We assume $V = \{1, 2, ..., n\}$ and E is given as a list $e_1, e_2, ..., e_m$. The greedy matching algorithm is described by the following pseudocode:

```
0 Initialize: M := \emptyset
```

```
1 for i = 1 to m do
```

2 **if** e_i does not intersect any edge in M **then** add e_i to M

3 end(for)

5 return M

It should be clear that the algorithm returns a matching (why?).

Problem. (a) Let M be the matching returned by the greedy matching algorithm. Prove:

(a1) M is a maximal matching.

(a2)

$$|M| \le \nu(G) \le 2|M|. \tag{1}$$

(b) Prove that the upper bound is tight in the following sense:

 $(\forall k \ge 0)(\exists G = (V, E) \text{ and an ordering of } E)(\nu(G) = 2k \text{ and } |M| = k).$

Last updated 1-22-2014