Algorithms - CMSC-27200 The "Greedy matching" problem
 László Babai

A matching in a graph $G=(V, E)$ is a set $M \subseteq E$ of pairwise disjoint edges. The size of a matching is the number of edges in M. The matching number $\nu(G)$ is the maximum size of a matching in G. For instance, $\nu\left(K_{n}\right)=\lfloor n / 2\rfloor$ and $\nu\left(K_{r, s}\right)=\min \{r, s\}$ (verify these to make sure you understand the definition!).

A matching M is maximal if it cannot be extended, i. e., if there is no matching that properly contains M.

A matching M is maximum if $|M|=\nu(G)$.
Note that every maximum matching is maximal but not conversely (verify!).
We wish to estimate $\nu(G)$ using a greedy approach. It will turn out that the worst error we can make in doing so is a factor of 2 .

We assume $V=\{1,2, \ldots, n\}$ and E is given as a list $e_{1}, e_{2}, \ldots, e_{m}$.
The greedy matching algorithm is described by the following pseudocode:
$0 \quad$ Initialize: $M:=\emptyset$
1 for $i=1$ to m do
$2 \quad$ if e_{i} does not intersect any edge in M then add e_{i} to M
3 end(for)
5 return M

It should be clear that the algorithm returns a matching (why?).
Problem. (a) Let M be the matching returned by the greedy matching algorithm. Prove:
(a1) M is a maximal matching.
(a2)

$$
\begin{equation*}
|M| \leq \nu(G) \leq 2|M| \tag{1}
\end{equation*}
$$

(b) Prove that the upper bound is tight in the following sense: $(\forall k \geq 0)(\exists G=(V, E)$ and an ordering of $E)(\nu(G)=2 k$ and $|M|=k)$.

