
Algorithms – CMSC-27200

Dijkstra’s algorithm

László Babai

2-5-2015

The problem solved is the single source min-cost paths problem for digraphs
with nonnegative edge weights.

INPUT: G(V,E,w, s) where (V,E) is a digraph, w : E → R is a weight
function, s ∈ V is a source vertex. All weights are assumed nonnegative.

OUTPUT: for each v ∈ the cost c(v) of a min-cost path from s to v; and
for each v ∈ V, v 6= s accessible from s, a parent link p(V ) ∈ v such that
c(v) = c(p(v)) + w(p(v), v).

The parent links define a tree (the “Dijkstra tree”) and a min-cost path
from s to v can be traced backwards from v to s along the parent links.

Note that the min-cost paths themselves are not part of the output be-
cause this would create an output of size potentially Ω(|V |2). Instead, the
Dijkstra tree provides a data structure such that for all v, a min-cost path
from s to v can be found at the cost of the combinatoral length (number of
steps taken) in a min-cost path.

REMARK on cost. We use a model where the following operations are
unit cost: arithmetic with and comparison of reals; link updates and other
bookkeeping operations.

The algorithm will maintain the following variables: status(v) (current sta-
tus: white, grey, or black), c(v) (current cost) and p(v) (current parent) for
each v ∈ V ; and a Priority Queue Q containing pairs (v, c(v)) prioritized
by the key c(v). When we write v ∈ Q it is implicit that v is in the queue
with key c(v).

The meaning of the status indicators, as in the case of DFS, is that vertices
that have not been discovered yet are white, vertices already discovered but
not yet finished are grey, and vertices that have been finished (“explored”)
are black. While the status indicators are not absolutely necessary and many
presentations of Dijkstra’s algorithm merge the white and grey categories, we
find that the distinction of the three categories is illuminating.

We describe the algorithm in pseudocode.

1



procedure DIJKSTRA(V,E,w, s)

01 for v ∈ V do
02 c(v) :=∞, p(v) = NIL, status(v) = white
03 c(s) = 0, p(s) = s, status(s) = grey
04 Q = ∅, INSERT(Q, s) [variables initialized]
05 while Q 6= ∅ do [main loop begins]
07 u← EXTRACT-MIN(Q)
07 for v ∈Adj[u] [exploration of v begins]
08 if status(v) = white then do
09 RELAX(u, v)
09 status(v) := grey
10 INSERT(Q, v)
11 elseif status(v) = grey then do
12 RELAX(u, v) [exploration of v ends]
13 status(u) = black [main loop ends]
14 return arrays c, p

The key subroutine, called RELAX(u, v), is an update operation along an
edge (u, v) ∈ E.

procedure RELAX(u, v) (where (u, v) ∈ E)

15 if c(v) > c(u) + w(u, v) then
16 c(v) := c(u) + w(u, v) [this is a DECREASE-KEY operation]
17 p(v) := u

ANALYSIS.

The proof of correctness of the procedure is the subject of a separate handout
on loop invariants.

Timing. The algorithm refers to three Priority Queue operations:

INSERT |V0| times
EXTRACT-MIN |V0| times
DECREASE-KEY ≤ |E0| times

2



where V0 is the set of accessible vertices and E0 is the set of accessible edges
(edges with both ends accessible).

In the Heap implementation of the Priority Queue, the cost of each
operation is O(log |V |) and therefore the total cost is O((|V |+ |E|) log |V |),
slightly superlinear.

We shall see that the Fibonacci Heap implementation of the
Priority Queue (Fredman - Tarjan 1987) reduces the overall cost to
O(|V | log |V | + |E|). This is still slightly superlinear, but for digraphs that
are not very sparse in the sense that their average degree is Ω(log |V |), it
becomes linear.

3


