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“Amortized analysis” is an elegant method to analyze the cost of a se-
quence of requests made to a data structure. The method is particularly
useful if the cost of the execution of a request varies greatly depending on
the current configuration.

Suppose a data structure maintains a list L of data and serves requests
R1, . . . , Rk. Upon request Rj , the list L is updated to the new list Rj(L); this
operation incurs cost c(Rj , L). In “amortized analysis,” we assign a possibly
different value, a(Rj , L), called the “amortized cost,” to this update. Given a
(finite or infinite) sequence S = (T1, T2, . . .) of requests (Ti ∈ {R1, . . . , Rk}),
let L0 be the empty list and for i ≥ 1 let Li = Ti(Li−1). Let St = (T1, . . . , Tt)
be the first t requests. The (actual) cost of St is c(St) =

∑t
i=1 c(Ti, Li−1),

while the amortized cost of St is a(St) =
∑t

i=1 a(Ti, Li−1). We say that the
assignment a(Rj , L) of “amortized costs” is correct if for all sequences S and
all t,

a(St) ≥ c(St). (1)

This is usually proved by an accounting trick. We set up an “escrow account”
with initial balance zero. At step t we “charge” a(Tt, Lt−1), but our actual
expense is c(Tt, Lt−1). If the amount charged exceeds the actual cost, the
surplus goes into the escrow account; if the amount charged is less than the
actual cost then the difference has to be made up from the escrow account.
The escrow account is not permitted to slip into the red (must always keep
nonnegative balance).

Formally, we define e(St) := a(St) − c(St); this is the escrow balance
after step t. The balance condition on the escrow account then says that for
all S and t,

e(St) ≥ 0. (2)

This statement is usually verified by induction on t; the inductive step is
formalized as a loop invariant (a predicate over the configuration space
which if true before the current request, remains true satifying the request).

On the next two pages, two toy examples follow, one of them with so-
lution. An example of great elegance and significance is given in the anal-
ysis of the “Fibonacci heap” data structure by Fredman and Tarjan. This
data structure maintains a set of real numbers and supports the following
requests: INSERT, EXTRACT MIN, DECREASE KEY, with amortized
costs O(1) for INSERT, O(log n) for EXTRACT MIN (where n is the num-
ber of data currently stored), and, startlingly, O(1) for DECREASE KEY.
So the total cost of a sequence of r INSERTs, s EXTRACT MINs, and t
DECREASE KEYs (starting from the empty set of data) is O(r+t+s log r).
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Remark. The Fibonacci heap data structure also supports INCREASE KEY
and DELETE at O(log n) amortized costs. Note the asymmetry between
the cost of DECREASE KEY and INCREASE KEY. The savings in DE-
CREASE KEY results in optimal implementations of Dijkstra’s algorithm
for min cost paths and Jarńık’s (a.k.a. Prim’s) algorithm for min cost span-
ning trees.

The best explanation of the Fibonacci heap data structure that I am
aware of can be found in the original article,

M. L. Fredman, R. E. Tarjan: Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM 34 (1987),
596-615.

Another good description is in the text

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduc-
tion to Algorithms. MIT Press and McGraw Hill, 2001. ISBN 0-262-03293-7.
Chapter 20: Fibonacci Heaps, pp. 476-497.

Wikipedia also has a pretty good article on it, which, however, avoids
the financial terminology (they call the escrow balance a “potential func-
tion,” an expression borrowed from physics and also used frequently in the
analysis of algorithms); the drawback is that the term “amortized” becomes
disconnected from the rest of the terminology.

1. (Increment and double data structure) A data structure maintains
a nonnegative integer X as a linked list of bits and serves two requests:
INCREMENT (X := X + 1) and DOUBLE (X := 2X). The costs are as
follows: unit cost for DOUBLE (appending a zero at the end); and k + 1
units of cost for INCREMENT, where k is the number of trailing ones in
Xold (which is the same as the number of trailing zeros in Xnew = Xold + 1.
So k + 1 is the number of consecutive bits to be switched in executing
INCREMENT. For instance, the cost of adding 1 to X = 23 is 4 units (23
in binary is 10111, 24 is 11000, so the last four bits are switched).

Initially, X = 0, represented by the empty string. Prove that the cost of
any sequence of n requests is O(n). Use amortized analysis.

Solution. Our goal is to assign amortized costs of O(1) to each request; then
the total amortized cost will be O(n) and therefor the actual cost will also
be O(n).

We need to give specific values to the amortized costs (O(1) is not spe-
cific). Let us charge 1 unit for DOUBLE and 2 units for INCREMENT.

Let us consider the following statement.

• The escrow balance is the number of 1s in the binary expansion of X.

Lemma. This statement is a “loop invariant” in the sense that if it is true
before executing a request, it remains true after the execution.

Proof. If the request is “DOUBLE” then the actual cost (1 unit) is precisely
covered by the charge, so the escrow balance is unaffected.
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If the request is “INCREMENT,” suppose X has k trailing 1s before the
execution of the command and b digits “1” total. After the execution of
INCREMENT, the new X will have b − k + 1 digits “1.” The actual cost
is k + 1, the charge is 2, so the escrow balance goes down by (k + 1)− 2 =
k − 1. If before the request the escrow balance was b (as required), now it
is b− (k − 1) = b− k + 1, as required. QED

It now follows by induction on t that for all t, the escrow balance is
the number of 1s in the binary expansion of X (base case: t = 0, X =
0, balance zero; inductive step: the Lemma). Consequenctly the escrow
balance remains nonnegative at all times. QED

It follows that the (actual) cost of any sequence of n requests is ≤ 2n
(because the amortized cost is ≤ 2n).

2. (Queue via stacks) We simulate queue Q (a FIFO list) using two stacks
R and S as follows:

• simulate enqueue(Q, x) by push(R, x)

• simulate dequeue(Q) by the following program:

00 if S empty then clear(R,S)
01 end(if)
02 x := pop(S)
03 return x

where clear(R,S) is the procedure

10 while R not empty
11 x := pop(R)
12 push(S, x)
13 end(while)

(a) Verify that this is a correct simulation. State a simple invariant which
can be used to verify correctness.

(b) The actual cost of “pop” and “push” is one unit each. Now we add
the operation “k-dequeue,” meaning that we dequeue Q k times or
until the queue becomes empty. Add this infinite set of operations
(k-dequeue for all k) to the simulation by two stacks.

Prove that the cost of any sequence of n requests is O(n). Use amor-
tized analysis. Prove that the following amortized cost table works:
enqueue: O(1); k-dequeue: free. State a specific value of the charge
for enqueue (how many units).
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