
Algorithms – CS-27200
On-line 2-server problem

János Simon

The competitive ratio of an online algorithm for an optimization problem is the ap-
proximation ratio achieved by the online algorithm (the worst-case ration between the
solution found by the online algorithm and the solution found by the optimal algorithm
that has knowledge of all the input.)

Consider the following 2-server on a line problem. There are 2 servers, initially
positioned at given integer coordinates x0, and y0 of a coordinate axis. At times
t = 1, 2, · · · there is a request, an integer fi. The request must be satisfied by moving
one of the two servers to fi. The cost of satisfying the request is the sum of the distances
travelled by the 2 servers from their previous positions to the configuration where at
least one of them is positioned at fi. The 2-server problem asks for an online algorithm
that satisfies a sequence of n requests. The cost of the algorithm is the sum of the costs
of satisfying each request. The online algorithm does not know fi+1 when choosing the
moves to satisfy fi.

(a) (“Greedy is bad”) Consider the (obvious) greedy algorithm: move the closest
server to fi. This has unbounded competitive ratio. Exercise: Prove! (Hint) Wlog,
assume y > x Consider the sequence of requests
y + (y − x)/4
y − (y − x)/4

repeated n/2 times.
(again, we may assume x, y multiples of 4) Eventually, each pair will incur a cost

of y − x to greedy, and cost 0 for the optimal solution.

Consider the following algorithm DC (Double Coverage):
Let xi, yi and fi denote the positions of the servers before the i-th request, and the

position of the i-th request, respectively.

• if fi ≤ xi move the server at xi to the request

• if fi ≥ yi move the server at yi to the request

• otherwise [the request is in the interval (xi, yi)] move both servers, at the

same speed towards the request, until one reaches it

Claim: DC is 2-competitive.
Proof sketch. We will run both the optimal algorithm OPT, and DC, and use a

potential function to limit the cost incurred by DC. Note that wlog, OPT always moves
a single server (we can always add the motion by the other server later.)

Consider the position of the servers of OPT and of DC before the ith move. Consider
the distance between xi and the server of OPT closest to it: let this distance be ai.



Similarly, let bi be the distance between the other server of OPT and yi. Define
Mi = ai + bi

Let Si = yi − xi be the distance between the two servers of DC. We define the
potential function Φ = 2M + S. Before dealing with the i-th request, the value of the
potential will be Φi = Mi + Si.

Now, consider a sequence of requests. We will first serve it with OPT, and estimate
the change to Φ caused by the move, as well as the distance travelled by the OPT
server. Then we will use DC and again compute both the change in Φ and the distances
travelled by the two servers.

We will charge DC the change in Φ this will cover the amortized cost.

Cost of OPT
The server moved some distance dOPT . DC did not move, but will be charged the

difference in Φ, for its amortized cost. The distance M between the OPT server that
moved and the corresponding DC server increased by at most dOPT (notice that the
DC server closest to the OPT server may have changed: the bound still holds!). Since
S is unchanged, the change in Φ is at most 2dOPT .

Cost of DC
There are two cases: whether the request is between the two DC servers or not.

In the case of an outside request (a request outside the interval (x, y) of the current
positions of the DC servers), a single DC server moves some distance dDC . Before its
move, the corresponding OPT server was at the site of the request, so M decreases by
exactly dDC . On the other hand, S, the distance between the two DC servers increased
by dDC . The total change in the potential function Φ is 0.

In the case of a request between the two DC servers, we claim

• M does not increase. In order to serve the request, one of the DC servers moved
to the location where an OPT server is, so the distance between them becomes
0. If the distance travelled by this DC server was dDC , then M decreased by
this amount. The other DC server also moved a distance of dDC , which may
have increased the distance between it and the corresponding OPT sever by this
amount. Still, the net change in M is at most 0.

• The distance between the two DC servers decreased by 2dDC

Thus, the potential function Φ only increases during the move of OPT, and increases
by at most 2dOPT when OPT incurs a cost of dOPT . Since the potential ”pays” for the
amortized cost of DCs moves, in a sequence of server requests these inequalities imply
that the total length covered by DC’s servers will be bounded by twice the length of
server moves by OPT.

This handout is based on notes by David Karger’s 6.854 course from 2004. The latest revision of the handout is 3/10/15


