
Algorithms – CMSC-27200
http://alg15.cs.uchicago.edu Homework set #9.

Due Wednesday, March 11, 2015
Posted 3-5. Updated 3-6 12:15am. Problem 9.6 added 3-7 1:15pm.

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW.” Do not hand in
problems marked “DO.” If you hand in homework marked “XC” (extra
credit), do so on separate and separately stapled sheets, please.
PRINT YOUR NAME and SECTION NUMBER ON EVERY SHEET you
submit. Use LaTeX to typeset your solutions. Hand in your solutions
on paper, do not email.

When writing pseudocode, explain the meaning of your variables.
Use comments to explain what is happening in each line. Also, give a short
explanation of the idea behind the algorithm. Unless otherwise stated,
describe your algorithms in pseudocode. Elegance of your code
matters.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructors.

9.1 HW (3+3+8 points) (Knapsack decision problem NP-complete)

(a) State the decision version of the Integer Knapsack problem. You
need to clearly state the input and state the yes/no question the
problem asks.

(b) Let KNAP denote the laguage corresponding to this decision
problem. Prove: KNAP ∈ NP. Your answer should be half a
line: clearly state the witness of membership. In another copuple
of lines, state the relevant facts about this witness. (No need to
prove these facts, they should be obvious.)

(c) Recall from class the Subset-Sum problem:
INPUT: positive integers a1, . . . , an, b.

QUESTION: (∃I ⊆ {1, . . . , n})

(∑
i∈I

ai = b

)
?

Let SUBS denote the corresponding language. Recall from class
that SUBS is NP-complete. Use this to prove that KNAP is NP-
complete. – Instructions: Given (b), what you need to do is

1

http://alg15.cs.uchicago.edu

construct a Karp reduction. Clearly state which language you
are reducing to which language. (Consult problem 8.2 for the
definition of Karp-reduction and the LATEX code for 4.)

9.2 HW (2+2+5 points) (NP-hard problems) We say that a compu-
tational task f is NP-hard if every problem in NP is Cook-reducible
to f . (Cook reductions were covered in the 2/27 class.)

(a) Let L1 and L2 be languages. Consider the following two state-
ments:
(A) L1 4Cook

L2 (B) L1 4Karp L2.
Which of the following two statements is evident from the defi-
nitions: (a1) (A) =⇒ (B) (a2) (B) =⇒ (A). Briefly
reason your answers. (As always, we view languages as decision
problems and vice versa.)

(b) State the Integer Knapsack problem (i. e., the Knapsack Problem
with integer weights and values). (Accurately state the input
and the output. Note that this is not a decision problem but an
optimization problem.)

(c) Prove that the Integer Knapsack problem is NP-hard by Cook-
reduction from KNAP. Describe your algorithm in English, no
pseudocode needed. Specifically state the number of calls your
algorithm makes to the Integer Knapsack1 oracle. (Such an oracle
tells the solution to any instance of the Integer Knapsack problem
it is fed.)

9.3 (Hamilton path vs. Hamilton cycle) The input is an undirected
graph. Recall that a Hamilton path is a path that passes through
every vertex. (So its length is |V | − 1.) A Hamilton cycle is a cycle
that passes through every vertex. (So its length is |V |.) A graph is
Hamiltonian if it has a Hamilton cycle. Let HAMILTONIAN denote
the class of Hamiltonian graphs. Let HAMILTON-PATH denote the
class of graphs with a Hamilton path. Assuming the theorem that
HAMILTONIAN is NP-complete, prove:

(a) HW (8 points) HAMILTON-PATH is NP-hard.

(b) XC (6 points) HAMILTON-PATH is NP-complete.

1A previous version of this problem erroneously referred to a “KNAP oracle.” Corrected
03-10 4am.

2

In each case, solve the problem by reduction from HAMILTONIAN.
State what type of reduction you are using. The solution to part (a)
should be a very simple algorithm. Write it in pseudocode. Correct-
ness should be obvious. – For part (b), give an accurate mathematical
description of the reduction and prove that it is correct. – If you solve
part (b) only, you will get half credit for part (a) as well. To get full
credit for part (a), you need to give a separate “easy” solution to part
(a).

9.4 (Metric Traveling Salesman) The input to the Metric Traveling
Salesman Problem (MTSP) is an edge-weighted complete graph with
positive edge-weights that satisfy the triangle inequality: for any three
distinct vertices x, y, z we have w(x, y) + w(y, z) ≥ w(x, z). The task
is to find a min-cost Hamilton cycle. In the Integer MTSP (IMTSP)
we assume that all weights are integers.

(a) HW (2 points) State the decision version of IMTSP. Call the
corresponding language2 LIMTSP. Prove that it belongs to NP.
(Name the witness.)

(b) HW (6 points) Prove that LIMTSP is NP-complete by Karp-
reduction from HAMILTONIAN.

(c) XC (6 points) Find a polynomial-time algorithm that approx-
imates IMTSP within a factor of 2, i.e., the output must be a
Hamilton cycle that is at most twice as expensive as an optimal
Hamilton cycle. Prove this approximation ratio. Describe your
algorithm in clear English, no pseudocode required. (Hint: Use
min-cost spanning tree.) — Comment. One can actually reach
an approximation ratio of 3/2 using the fact that min-cost perfect
matching can be computed in polynomial time. Do not use this
result.

9.5 HW (3+6 points) (Amortized analysis: Queue via stacks)
Study the “Amortized analysis” handout. Solve the “Queue via stacks”
problem stated there.

9.6 (MAX-3SAT) Recall that a Boolean variable takes values 0 or 1 and
a literal is a Boolean variable or its negation. A disjunctive clause
is an OR of literals corresponding to distinct3 variables, e. g., x1 ∨

2This notation was added to parts (a) and (b) 03-10 4:45am.
3The distinctness requirement was added 3-8 8:50pm.

3

x4 ∨ x7 (but not x4 ∨ x4 ∨ x7 nor x1 ∨ x4 ∨ x1). A disjunctive k-
clause is a disjunction of k literals corresponding to k distinct variables
(so the example above is a disjunctive 3-clause). The MAX− 3SAT
problem is an optimization problem defined as follows: INPUT: a list
of disjunctive 3-clauses, C1, . . . , Cs. Question: Find the maximum
number m such that m of the clauses can be simultaneously satisfied,
i. e., there exists an assignment of (0, 1)-values to the variables that
satisfies at least m of the clauses. Let the variables be x1, . . . , xn.

(a) HW (2+4 points) Prove that m ≥ 7s/8. Reproduce with full
details the proof seen in class: flip a coin for each variable to
decide its value. (a1) What is the size of the sample space for
this experiment? (a2) Let X be the number of satisfied clauses
(so X is a random variable). Prove: E(X) = 7s/8. Give a clear
definition of the random variables you use.

(b) HW (4 points) Assume 8 | s. Prove that the inequality m ≥
7s/8 is tight. (For every s that is divisible by 8 you need to
construct a set of s disjunctive 3-clauses of which no more than
7s/8 can be simultaneously satisfied.)

(c) XC (5 points) Let X be the random variable defined in part
(a). Prove: P (X ≥ 7s/8) ≥ 1/(s + 1). (Use Markov’s inequality:
If Y is a non-negative random variable and a > 0 then P (Y ≥
a) ≤ E(Y)/a.)

(d) HW (3+2 points) Part (a) asserts that there exists an assign-
ment to the variables that satisfies at least 7s/8 of the clauses.
We want to find such an assignment as follows: we repeat the
experiment described in (a) until we find an assignment that sat-
isfies at least 7s/8 clauses. (d1) Based on (c), what can we say
about the expected number of trials? (d2) Does this randomized
algorithm run in polynomial expected time?

(e) XC (8 points) Derandomize this algorithm. In other words,
construct a polynomial-time deterministic algorithm that will al-
ways find a substitution that satisfies at least 7s/8 of the clauses.
Your algorithm should be based on the idea of (a). Prove that
your algorithm is correct. (State an appropriate loop invariant.)
Analyze the running time of your algorithm.

9.7 (BONUS problem for your amusement, not required) If you
hand in a solution (make sure to put it on a separate sheet), you will

4

receive feedback, but no points.
A set S is countable if it has an injection into the set N = {1, 2, 3, . . . }
(the positive integers). So every finite set is countable; and every
subset of N is countable. S is countably infinite if it is countable and
it is infinite. S is uncountable if S is not countable. Prove:

(a) If S is countably infinite then there is a bijection between S and
the set of positive integers.

(b) The union of countably many countable sets is countable.

(c) If Σ is a finite alphabet then Σ∗ is countable.

(d) If Σ is a countable alphabet then Σ∗ is countable.

(e) The set of rational numbers is countable.

(f) The complexity class P is countable (i. e., there are countably
many languages in P).

(g) The complexity class NP is countable (i. e., there are countably
many languages in NP).

(h) The complexity class coNP is countable (i. e., there are countably
many languages in coNP).

(i) The set of infinite (0, 1)-strings in uncountable.

(j) The set of real numbers is uncountable.

(k) If Σ 6= ∅ then the set of languages over Σ is uncountable.

5

