
Algorithms – CMSC-27200
http://alg15.cs.uchicago.edu Homework set #8.

Posted 3-1. Problems 8.1(c2) and 8.2 updated 3-2 12:30pm.
Due Wednesday Friday, March 6, 2015

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW.” Do not hand in
problems marked “DO.” If you hand in homework marked “XC” (extra
credit), do so on separate and separately stapled sheets, please.
PRINT YOUR NAME and SECTION NUMBER ON EVERY SHEET you
submit. Use LaTeX to typeset your solutions. Hand in your solutions
on paper, do not email.

When writing pseudocode, explain the meaning of your variables.
Use comments to explain what is happening in each line. Also, give a short
explanation of the idea behind the algorithm. Unless otherwise stated,
describe your algorithms in pseudocode. Elegance of your code
matters.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructors.

8.1 (Configuration space) Onaedo designs an algorithm that involves
an array of n variables, x1, . . . , xn, taking decimal digits as values
(0 ≤ xi ≤ 9). The body of her algorithm consists of a while loop that
updates these variables.

(a) HW (4 points) Let C denote the configuration space. Determine
|C|. Your answer should be a very simple formula. (Recall that a
configuration is a setting of all variables; for instance if n = 5 then
(9, 0, 6, 6, 1) is a configuration in this problem. The configuration
space is the set of all configurations. So you need to count the
configurations.)

(b) XC (4 points) Onaedo discovers that the following predicate is
a loop invariant for her while loop:

x1 ≤ x2 ≤ · · · ≤ xn. (1)

Let us call this predicate M for “monotonicity,” so M(x1, . . . , xn) =
1 if and only if Eq. (1) holds. Let CM denote the set of those con-
figurations that satisfy M . Prove: |CM | =

(
n+9
n

)
.

1

http://alg15.cs.uchicago.edu

(c) HW (5+4 points) Onaedo’s algorithm needs to discover a con-
figuration in CM that satisfies a given predicate T (x1, . . . , xn) or
show that no such configuration exists; let’s call this “Onaedo’s
problem.” Onaedo has a polynomial-time algorithm that decides,
given a configuration a = (a1, . . . , an), whether or not a satisfies
T . (So T is a polynomial-time decidable predicate.) Prove that
Onaedo’s problem can be solved in polynomial time (polynomial
in terms of the bit-length of the description of a single configu-
ration when we encode each decimal digit by four binary digits).
(c1) Write your algorithm in pseudocode. Explain what your al-
gorithm does in English, and comment each line of your code to
explain what happens in that line. No rigorous proof of correct-
ness of your algorithm is required, just a brief indication why it
works. (c2) Prove that your algorithm runs in polynomial
time as specified above. Determine the exponent in the polyno-
mial bound (the smallest constant C such that your algorithm
runs in O(NC) where N is the bit-length of the description of a
configuration). (Use part (b) for this; assume T can be computed
in time O(Nk).)

8.2 HW (7 points) (transitivity of Karp reduction) Recall the defi-
nition of Karp reduction: Let Σ1 and Σ2 be finite alphabets, L1 ⊆ Σ∗

1

and L2 ⊆ Σ∗
2 be languages. (Σ∗ denotes the set of all finite strings

over the alphabet Σ.) A Karp reduction from L1 to L2 is a function
f : Σ∗

1 → Σ∗
2 such that (i) f is computable in polynomial time; and

(ii) (∀x ∈ Σ∗
1)(x ∈ L1 ⇐⇒ f(x) ∈ L2).

We say that L1 is Karp-reducible to L2 if such an f exists; notation:
L1 4Karp L2. We say that L1 is Karp-reducible with exponent c to L2

if the Karp reduction f can be computed in time O(nc) (where n is
the bit-length of the input to f).

Prove that Karp-reducibility is transitive: if L1 4Karp L2 4Karp L3

then L1 4Karp L3. (LATEX for the curly inequality is \preccurlyeq.)
Determine the exponent: Assuming L1 is Karp-reducible to L2 with
exponent c and L2 is Karp-reducible to L3 with exponent d, what is
the exponent of the reduction of L1 to L3? [Notation updated 3-4
12:30pm]

8.3 DO: Let NPC denote the class of NP-complete languages. Prove: if
NPC∩P 6= ∅ then NP = P. In other words, if there is an NP-complete
language that can be decided in polynomial time then all languages

2

in NP can be decided in polynomial time. (“Deciding” a language L
means deciding the membership problem in L, i. e., given x ∈ Σ∗, we
need to decide whether or not x ∈ L.)

Comment: It is conjectured that P 6= NP. This exercise then says
that, according to this conjecture, none of the NP-complete problems
can be solved in polynomial time. So for instance it follows from the
conjecture that 3-colorability cannot be decided in polynomial time.
It does not follow from the conjecture that integers cannot be factored
in polynomial time, although we believe that to be the case.

8.4 HW (6 points): Prove: If 3-colorability of graphs can be decided in
polynomial time then RSA can be broken in polynomial time. (Use
the theorem that the class of 3-colorable graphs is NP-complete.) Note
that breaking RSA is not a decision problem. Do not write any
pseudocode for this problem; just explain in clear English the steps
it will take to break RSA using a polynomial-time algorithm for 3-
colorability.

8.5 DO: Prove: If NPC ∩ coNP 6= ∅ then NP = coNP. In other words, if
there is a well-characterized NP-complete language then all languages
in NP are well characterized. (Check the “Material covered” link on
the course website for the notion of good characterization.)

Comment: It is conjectured that NP 6= coNP. This exercise then says
that, according to this conjecture, none of the NP-complete problems
is well characterized. So for instance there are no polynomial-time
verifiable certificates for non-3-colorability in the sense that there are
infinitely many graphs that are not 3-colorable yet this fact cannot be
certified by polynomial-time verifiable certificates. (Of course for some
graphs it is easy to certify non-3-colorability: for instance if the graph
contains K4. But a graph need not contain K4 in order to not be 3-
colorable. This exercise says a graph may not be 3-colorable without
any apparent reason.)

8.6 DO: Recall the decision version of the problem of factoring integers
(into their prime factors); the corresponding language1 is

FACTOR = {(x, y) | (∃d)(d | x and 2 ≤ d ≤ y)}
1The originally posted definition of the FACTOR language erroneously omitted the

2 ≤ d constraint.

3

Prove: if FACTOR ∈ NPC then NP = coNP. In other words, it follows
from the NP 6= coNP conjecture that FACTOR is NOT NP-complete.

Comment: While we believe FACTOR is a hard problem (FACTOR /∈
P), the problem of factoring is not as hard as 3-colorability in this
structural sense. It is our focus on decision problems that allowed us
to notice the asymmetry between “yes” and “no” answers, allowed us
to define the complexity classes NP and coNP, and made it possible to
make such statements of stuctural complexity like FACTOR ∈ NP ∩
coNP and therefore, conjecturally, FACTOR /∈ NPC, thuis placing the
factoring problem into a lower complexity class than the NP-complete
problems. This distinction could not be observed based merely on
the fact that the best algorithms known for factoring take exponential
time (exponential in

√
n where n is the bit-length of the input).

8.7 HW (3 points) Prove: If you prove that RSA cannot be broken in
polynomial time then you are eligible for a million-dollar prize (unless
someone else has already claimed that prize). You may use any of the
exercises above and any result proved in class; and you may also use
the theorem that 3-colorability is NP-complete. Name the institution
that funds the prize.

8.8 HW (5 points) We are given an edge-weighted digraph G = (V,E,w)
where w : E → R is the weight function. Assume E 6= ∅. Decide,
in time O(|V ||E|), whether or not G contains a negative cycle. —
Instructions. If we are also given a source vertex s then Bellman–Ford
decides (in round |V |) whether or not a negative cycle, accessible from
s, exists. So we could decide whether or not G has a negative cycle by
runinng Bellman–Ford for all s ∈ V . But this would require Θ(|V |2|E|)
time (|V | applications of |V |-round Bellman–Ford; each round scans
the entire edge list). Solve the problem with a single application of
Bellman–Ford to a weighted digraph other than G. Your job is to
construct this other weighted digraph, H. Give a clear description of
H. No pseudocode required.

4

