
Algorithms – CMSC-27200
http://alg15.cs.uchicago.edu

Homework set #7. Posted 2-19. Due Wednesday, February 25, 2015
The following problems were updated on 2-20: 7.1(a), 7.1(b), 7.9(b)

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW.” Do not hand in
problems marked “DO.” If you hand in homework marked “XC” (extra
credit), do so on separate and separately stapled sheets, please.
PRINT YOUR NAME and SECTION NUMBER ON EVERY SHEET you
submit. Use LaTeX to typeset your solutions. Hand in your solutions
on paper, do not email.

When writing pseudocode, explain the meaning of your variables.
Use comments to explain what is happening in each line. Also, give a short
explanation of the idea behind the algorithm. Unless otherwise stated,
describe your algorithms in pseudocode. Elegance of your code
matters.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructors.

7.1 (Fermat test) A number p is composite if p is not prime and not 0 or
±1. We say that a number a is a Fermat witness for the number p if
gcd(a, p) = 1 and ap−1 6≡ 1 (mod p). Observe that if p ≥ 2 and p has
a Fermat witness then p is composite (by Fermat’s little Theorem).

(a) HW (8 points) Composite numbers that do not have a Fermat
witness are called Carmichael numbers. In other words, a num-
ber p ≥ 2 is a Carmichael number if p is composite yet (∀a)(if
gcd(a, p) = 1 then ap−1 ≡ 1 (mod p). Prove that the number
p = 561 is a Carmichael number. (561 = 3 · 11 · 17). — Hint:
verify the congruence a560 ≡ 1 separately modulo 3, modulo 11,
and modulo 17.

(b) XC (4 points) Let q, r be distinct primes. Prove: qr is not a
Carmichael number. – Use the following fact. Def: Let p be a
prime. An integer g is a primitive root mod p if g 6≡ 0 (mod p)
and for 1 ≤ j ≤ p− 2 we have gj 6≡ 1 (mod p). For instance, 3
is a primitive root modulo 7 but 2 is not. Theorem: For every
prime p there exists a primitive root mod p.

1

http://alg15.cs.uchicago.edu

(c) XC (6 points) Assume p ≥ 2 is not a Carmichael number. Let
F (p) denote the set of integers between 0 and p − 1 that are
relatively prime to p. Pick a ∈ F (p) at random. Prove: with
probability at least 1/2, the number a is a Fermat witness for p.
(So if there is a Fermat witness then there are so many that it
will be easy to find one just by random sampling.)

7.2 DO (Greedy algorithm for minimum-cost spanning tree) Let
G = (V,E,w) be a connected weighted undirected graph where w :
E → R is the weight function. We view E as a set of unordered pairs.
The cost of a spanning tree is the sum of the weights of its edges.

The greedy algorithm collects a set T of edges for the minimum-cost
spanning tree. Initially T is empty and at every stage, the graph (V, T)
is a forest (cycle-free graph). (The latter is a loop invariant.)

0 T := ∅ [initialize]
1 while the forest (V, T) is disconnected
2 split the set of connected components of (V, T)

into two non-empty parts, say A and B
3 pick an edge e ∈ E of minimum weight among the edges

connecting A to B
4 add e to T
5 end(while)
6 return T

Note that there is a large degree of freedom in this algorithm: in
each round we can choose an arbitrary partition (A,B) of the set
of connected components of the current forest (V, T) (line 2). We
also may have some choice in line 3 (if there are ties among the edge
weights).

Prove: regardless of the choices made in lines 2 and 3, the algorithm
always returns a minimum-cost spanning tree.

Note: details of implementation (and running time) very much depend
on the choices made in Line 2. The choice made by Jarńık’s (1930)
(a.k.a. Prim’s, 1967) algorithm is to make all but one of the connected
components of (V, T) be isolated vertices.

2

7.3 DO (Jarńık’s algorithm): Implement Jarńık’s algorithm for minimum-
cost spanning tree in pseudocode. Your code should be identical with
Dijkstra’s except a small difference in the RELAX routine. What is
the difference? Explain why this code really implements Jarńık’s al-
gorithm. State the three data-structure operations used.

7.4 DO (uniqueness of minimum-cost spanning tree) Prove: if all
edge weights are distinct then the minimum-cost spanning tree is
unique.

7.5 DO (tree update) Let T be a minimum-cost spanning tree of the
(connected, undirected) graph G = (V,E). Let us now reduce the
weight of an edge e ∈ E. Show how to update T in linear time. (T is
given.)

7.6 (minimum max-cost spanning tree): The max-cost of a spanning
tree is the maximum of the weight of its edges. We seek to minimize
this quantity; we call a spanning tree that is optimal for this measure
a “minimum max-cost spanning tree.”

(a,b) Prove that a minimum-cost spanning tree is necessarily a mini-
mum max-cost spanning tree, but not conversely.

(c) XC (5 points) Show that a minimum max-cost spanning tree
can be found in linear time.

7.7 (Fibonacci numbers): Recall the definition of Fibonacci numbers:
F0 = 0, F1 = 1 and Fn = Fn−1+Fn−2. So the sequence is 0, 1, 1, 2, 3, 5, 8, 13,
Recall that

Fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
. (1)

Note that γ = (1 +
√

5)/2 ≈ 1.618 is the Golden Ratio.

(a) DO: Prove: Fn ∼ (1/
√

5)γn.

(b) HW (3 points) Let dn denote the number of binary digits of Fn.
Asymptotically evaluate dn. Your answer should be a relation of
the form dn ∼ anbcn. Determine the constants a, b, c. You may
use part (a) without proof.

(c) HW (3 points) Prove that Fn cannot be computed in polyno-
mial time. (The input is the number n in binary.)

3

(d) XC (4 points) Prove that given the positive integers n and m in
binary, the number (Fn mod m) can be computed in polynomial
time. Your algorithm should be very elegant with reference to an
algorithm studied in class. No pseudocode needed. (Hint: study

the powers of the matrix

[
0 1
1 1

]
. Observe a pattern, prove by

induction.)

7.8 Study the “Greedy coloring” handout (GCH).

(a) DO: GCH (a) (Greedy coloring is not so bad)

(b) XC (4 points) GCH (b) (Greedy coloring is terrible)

(c) HW (3 points) GCH (c) (Greedy coloring can be optimal)

(d) HW (6 points) GCH (d) (Implement greedy coloring in linear
time)

(e) Research problem (discuss with L.B. if you are interested). How
bad is greedy coloring of we first randomly relabel the vertices?
Do there exist bipartite graphs that will, with high probability,
require more than nc colors for a constant c > 0 ?

7.9 (Coloring planar graphs)

(a) DO: Find a planar graph in which at least 100 vertices have degree
≥ 100.

(b) HW (4+4 points) Give an efficient algorithm to color every
planar graph with at most 6 colors. Use the following theorem:
Every planar graph has a vertex of degree ≤ 5. (b1) Describe
your algorithm in high-level language like the description of the
greedy coloring algorithm in the Handout. (b2) Implement
your algorithm in linear time.

Note: The 4-Color Theorem says that every planar graph is 4-colorable
(it can be legally colored using at most 4 colors). Moreover, it is known
that such a coloring can be found in polynomial time. That is a very
complicated algorithm, however.

7.10 DO: Study the “Greedy matching” handout. Solve the problems stated
at the end of the handout.

7.11 DO: The linear programming (LP) feasibility problem takes as input
a list L of linear inequalities of the form

∑n
j=1 aijxj ≤ bi. (This is the

4

i-th inequality.) The aij and bj are the coefficients of L. We say that
L is feasible if there exist real numbers x1, . . . , xn that satisfy all the
inequalities in L.

The integer LP (ILP) feasibility problem asks whether or not there is
a solution to this system in which the variables take integer values.

The (0, 1)-LP feasibility problem asks whether or not there is a solution
to this system in which the variables take values 0, 1 only.

(a) Prove that the following LP is (a1) feasible but (a2) not ILP-
feasible (has no solution in integers):

x1 + 5x2 + 2x3 ≤ 4

2x1 − 2x2 + x3 ≤ 1

−2x1 − 2x2 − 2x3 ≤ −3

(b) Karp-reduce 3-colorability of graphs to (0, 1)-LP feasibility. Ex-
planation: Given a graph G, you need to construct in polyno-
mial time an LP L(G) with integer coefficients such that G is
3-colorable if and only if L(G) is (0, 1)-feasible.

5

