
Algorithms – CMSC-27200
http://alg15.cs.uchicago.edu

Homework set #5 due February 11, 2015
Loop invariant in Problem 5(a) updated 2-15.

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW.” Do not hand in
problems marked “DO.” If you hand in homework marked “XC” (extra
credit), do so on separate and separately stapled sheets, please.
PRINT YOUR NAME and SECTION NUMBER ON EVERY SHEET you
submit. Use LaTeX to typeset your solutions. Hand in your solutions
on paper, do not email.

When writing pseudocode, explain the meaning of your variables.
Use comments to explain what is happening in each line. Also, give a short
explanation of the idea behind the algorithm. Unless otherwise stated,
describe your algorithms in pseudocode. Elegance of your code
matters.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity. State collaborations and sources
both in your paper and in email to the instructors.

In this problem set, every digraph is given in an adjacency-list repre-
sentation, unless expressly stated otherwise. Recall that an adjacency-list
representation consists of an array of vertices, where vertex u is the start
of the linked list Adj[u] that lists all the out-neighbors of u in some order.
An algorithm on a digraph G = (V,E) is said to run in linear time if the
number of steps is O(|V |+ |E|).

5.0 Remember to hand in your solution to problem 4.4 at this time. (If
you handed it in already – ahead of time, please hand it in again to
reduce our administrative burden.)

5.1 DO (Little-oh vs. logarithms) Assume an, bn > 1. Consider the
following two statements.
(C) an = o(bn) and (D) ln an = o(ln bn).
Recall for problem 4.1 that (D) 6=⇒ (C).

(a) Prove: if an ≥ 1.0001 then (D) =⇒ (C).

(b) Use part (a) to give a simple proof of the statement that

2(lgn)
1/2

= o(n1/10). (1)

1

http://alg15.cs.uchicago.edu

(This was problem 4.2.)

5.2 DO (Optimal walk) (Problem updated 2-9-2015 8pm: “zero-weight
cycles” added. This fixes an error pointed out by Clayton Norris on
Piazza.)

Consider a weighted rooted digraph G = (V,E,w, s) where s ∈ V is a
specified source vertex (also referred to as the “root”) and w : E → R
is the weight function. A negative cycle is a cycle whose edge weights
add up to a negative number. A zero-weight cycle is a cycle whose
edge weights add up to zero.

Recall that we say that a subset A of the vertices is accessible if there is
a path from the source to at least one vertex in A. Accessible negative
cycles are a source of trouble for min-cost path problems.

Recall that a walk is allowed to repeatedly visit the same vertex. An
i-step walk from s to v is a sequence s = u0 → u1 → · · · → ui = v
of vertices uj where (uj−1, uj) ∈ E for j = 1, . . . , i. We call i the
combinatorial length of this walk to avoid confusion with the cost of
the walk,

∑i
j=1w(uj−1, uj). This latter quantity (the cost) is often,

confusingly, referred to as the “length” of the walk; we avoid this ter-
minology and stick with the term “cost of the walk” for this quantity.

Let W be an s→ · · · → v walk of combinatorial length ≤ i such that
W has minimum cost among all s → · · · → v walks of combinatorial
length ≤ i. (a) Prove: if there is no accessible negative cycle in G
and no accessible zero-weight cycle then W is a path (has no repeated
vertex). It follows in this case that W has combinatorial length ≤
|V | − 1 (otherwise W would be forced to repeat a vertex). How is this
observation relevant to the correctness of the Bellman–Ford algorithm?

(b) If we permit zero-weight cycles (but continue to exclude negative
cycles), then W is not necessarily a path anymore, but we can cut
some zero-weight closed walks out of W such that the resulting walk
W ′ has the same cost as W and W ′ is an s→ · · · → v path.

5.3 Recall the Bellman–Ford algorithm for the single-source min-cost
path problem. The input is (V,E,w, s) where (V,E) is a digraph,
w : E → R is a weight function, and s ∈ V is a source vertex. Negative
weights and even negative cycles are permitted. E is given as a linear
list; the only way we can access the list is by scanning it in the given
order. The algorithm maintains four types of variables: c(v) (current
cost of v ∈ V), p(v) (parent of v ∈ V) the cycle counter i, and a

2

Boolean variable z to indicate whether or not anything has changed in
a given round. Here is the algorithm. It takes a parameter N ≥ |V |,
the number of rounds.

N -round Bellman–Ford (N ≥ |V |)

00 for v ∈ V do c(v) =∞, p(v) = NIL [initialize]
01 end(for)
02 z = TRUE, c(s) = 0, p(s) = s [initialize]
03 for i = 1 to N do
04 if z = FALSE then break [exit for loop if no cost got

updated in previous round]
05 end(if)
06 z = FALSE
07 for e ∈ E do RELAX(e)
08 end(for)
09 end(for)
10 if z = TRUE print “accessible negative cycle exists”
11 else print “optimal costs found”
12 end(if)

We use the basic form of the RELAX routine (no investigation of the
status of the node to be updated).

RELAX(u, v) (for e = (u, v) ∈ E)

13 if c(v) > c(u) + w(u, v) then do
14 c(v) = c(u) + w(u, v), p(v) = u
15 z = TRUE [value updated]
16 end(if)

(a) DO: (Updated 2-10 5pm) Modify the procedure by removing lines
04 and 05. (This makes the variable z irrelevant and simplifies
the solution of part (b).)

Prove that the following statement is a loop invariant for the main
loop (lines 03 to 09) of the modified procedure (assuming some
trivial loop invariants like in the analysis of Dijkstra’s algorithm;
state those):

(∀v ∈ V)(c(v) ≤ the minimum of the costs of all walks
of combinatorial length ≤ i from s to v)

3

Your proof will show that the highlighted statement is a loop in-
variant regardless of the presence of negative cycles and regardless
of the value i (including values greater than |V |).

(b) HW (4 points) Line 04 tells us that if z = FALSE at the be-
ginning of an execution of the main for loop then we can im-
mediately conclude that all current costs are optimal. Justify
this statement. You may use part (a) without proof. Your proof
should be very short, just a few lines. Solutions exceeding 2/3 of
a page will not be graded. (Don’t manipulate this requirement
by funny typesetting; keep ≥ 1 inch margins and font size ≥ 11.)

(c) DO: Infer from part (a) that if there is no negative cycle then
iteration i = |V | − 1 produces optimum costs for all vertices.

(d) HW (4 points) Prove: an accessible negative cycle exists ⇐⇒
iteration i = |V | of the main for loop sets the variable z to z =
TRUE. (This justifies line 10.)

Your solution should be very simple, just a few lines. Solutions
exceeding 2/3 of a page will not be graded. (See comment in item
(b) on typesetting.)

Comment. Note that (c) and (d) combined say that a choice of
N = |V | is sufficient to either compute the optimum path costs
or to conclude that an accessible negative cycle exists. Bellman–
Ford set N = |V | so the running time of the algorithm is O(|V ||E|).

(e) DO: Let Pi be the “parent link digraph” after the i-th iteration of
the main loop, i. e., the digraph whose vertices are the vertices of
finite current cost and the edges are the pairs (v, p(v)) for these
vertices v 6= s after the i-th iteration. Prove:

(e1) If there is no accessible negative cycle then for all i, the di-
graph Pi is a tree oriented toward the root.

(e2) If there is an accessible negative cycle then after iteration
#|V |, the parent digraph contains a directed cycle.

(f) DO: If a negative cycle exists, find one in time O(|V ||E|). (Use
part (e2).)

5.4 HW (6 points) The midterm (posted, click here) states the “Uphill-
downhill Dijkstra problem” and asks to solve it in “Dijkstra time.”
Recall that Dijkstra cannot be implemented in linear time. Show that
if all elevations are different then you can do better: solve the “Uphill-
downhill Dijkstra problem” in linear time under this assumption.

4

http://alg15.cs.uchicago.edu/mt1.pdf

Describe your solution in unambiguous English; no pseudocode re-
quired. State exactly what subroutines you use; do not use any un-
necessary subroutines.

Your solution should be very simple, just a few lines with reference
to another problem in homework sets 1–5. Solutions exceeding half a
page will not be graded. (See comment in item 5.3(b) on typesetting.)

5.5 DO (Order statistics: pivot selection) Recall that the determinis-
tic algorithm for selection began with breaking the n items into groups
of 5; selecting the median of each group of 5; and then taking the me-
dian x of these medians as our pivot. Prove: 0.3n ≤ rank(x) ≤ 0.7n.
(We say that rank(x) = k if x is the k-th smallest item on the list.)

5.6 HW (5 points) (Divide and conquer: order statistics) The
pivot selection as described in the preceding exercise leads to the re-
currence T (n) ≤ T (n/5)+T (7n/10)+O(n) (ignoring rounding) where
T (n) denotes the total number of comparisons made to select the k-
th smallest item among n items (real numbers). (This item is called
the k-th order statistic and is said to have rank k.) Prove that if a
monotone increasing function T (n) ≥ 0 satisfies this recurrent inequal-
ity then T (n) = O(n). Use the method of reverse inequalities; ignore
rounding.

5.7 XC (4+3 points) (Divide and conquer: order statistics)
(a) Would the procedure work with groups of size 3? (b) Would it
work with groups of size 7? — Describe in each case the recurrence
you get and evaluate each recurrence.

5

