
Algorithms – CMSC-27200
http://alg15.cs.uchicago.edu

Homework set #2 due January 21, 2015

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW.” Do not hand in prob-
lems marked “DO.” If you hand in homework marked “XC” (extra credit),
do so on separate and separately stapled sheets. PRINT YOUR NAME ON
EVERY SHEET you submit. We ask you to use LaTeX to typeset your
solutions; starting January 28, this will be required. Hand in your solutions
on paper, do not email.

When writing pseudocode, explain the meaning of your variables.
Use comments to explain what is happening in each line. Also, give a short
explanation of the idea behind the algorithm. Describe all algorithms in
this problem set in pseudocode. Elegance of your code matters.

Carefully study the policy (stated on the website) on collaboration, in-
ternet use, and academic integrity.

In this problem set, every digraph is given in an adjacency-list repre-
sentation, unless expressly stated otherwise. Recall that an adjacency-list
representation consists of an array of vertices, where vertex u is the start
of the linked list Adj[u] that lists all the out-neighbors of u in some order.
An algorithm on a digraph G = (V,E) is said to run in linear time if the
number of steps is O(|V |+ |E|).
By “graph” we mean an undirected graph without self-loops and without
parallel edges. A graph is a digraph satsifying the condition that for all
u, v ∈ V , if (u, v) ∈ E then (v, u) ∈ E and (u, u) /∈ E.

2.1 DO (Conversion of representations) An edge-list representation a
digraph is a list of the edges in some order.

(A) Design an algorithm that converts an edge-list representation into
an adjacency-list representation in linear time. Describe your
algorithm in elegant pseudocode.

(B) Design an algorithm that converts an adjacency-list representa-
tion into an edge-list representation in linear time. Again, de-
scribe your algorithm in elegant pseudocode.

2.2 HW (3 points) (Transpose) The transpose of a digraph G = (V,E),
denoted GT , has vertex set V , and edge set ET = {(u, v) | (v, u) ∈ E}.

1

http://alg15.cs.uchicago.edu

(i) Given an adjacency-list representation of the digraph G, produce
an adjacency list representation of GT in linear time. Describe
your algorithm in elegant pseudocode.

(ii) Reason why your algorithm runs in linear time.

2.3 DO (Monotone adjacency lists) Consider a digraph G = (V,E)
where V = {1, . . . , n}. We say that an adjacency list representation
of G is monotone if for every vertex i the vertices adjacent to i are
listed in increasing order. Given an adjacency list representation of G,
produce a monotone adjacency list representation of G in linear time.
Describe your algorithm in elegant pseudocode.

2.4 HW (3 points) (Recognizing undirected graphs) Given a di-
graph, decide in linear time whether or not it is an undirected graph.
Note: If you wish to refer to “DO” exercises above as subroutines, you
need to describe those subroutines as well.

2.5 DO (Removing multiplicities of neighbors) Consider an adjacency-
list representation of a digraph, where in the adjacency list of vertex
v a vertex w can appear multiple times. In linear time produce an
adjacency list representation of the same digraph without repetitions.
Describe your algorithm in elegant pseudocode. Here “linear time”
means at most a constant times the length of time it takes to make
a single pass through the input, i. e., O(|V | + |E′|) wghere E′ is the
“multiset” of edges, each edge (u, v) being repeated as many times as
v appears in Adj[u].

2.6 DO (In-degrees) Given a digraph, compute the in-degree of every
vertex in linear time.

2.7 XC (6+8 points) (Graph properties) Consider the adjacency ma-
trix representation of an n-vertex graph G. We will count the number
of times our algorithm accesses an element of the adjacency matrix.

(a) Prove that a deterministic algorithm that tests whether G is con-
nected must make Ω(n2) accesses. (Hint: produce an “adversary”
strategy that, as long as it can, “feeds” the algorithm information
that is not sufficient to decide connectedness.)

(b) A graph property is a predicate on graphs that does not depend
on the numbering of the vertices, i.,e., if it is true for a graph G then
it is also true for all graphs that are isomorphic to G. Examples: con-
nectedness, planarity, being regular of degree 3, 3-colorability, being

2

isomorphic to a given graph, etc. Find a graph property that can
be decided in O(n) accesses to the adjacency matrix. The property
should not be trivial (must be true for some graphs on n vertices and
false for others).

2.9 HW (8 points) (Topological sort)

Given an n-vertex digraph G, either

(a) find a directed cycle of G; or

(b) compute a relabeling of the vertices as v1, v2, . . . , vn such that
(vi, vj) ∈ E(G) then i < j).

Your algorithm should run in linear time. Do NOT use depth-first
search (DFS).

Reason the correctness and running time of your algorithm.

2.10 DO (BFS tree) (i) Show by example that the BFS tree with source
s of an undirected graph G can depend on the ordering of vertices
within the adjacency lists. Make your example small.

(ii) Prove that the distance to the source s, computed by BFS, does
not depend on the ordering of vertices within adjacency lists.

2.11 DO (BFS edge classification) Consider a classification of edges in a
BFS tree, using the criteria used to classify edges in depth-first search.
Let u.dist denote the directed distance from the source s.

(i) Prove that in the BFS of an undirected graph

1. There are no back edges and no forward edges.

2. For each tree edge (u, v) v.dist = u.dist + 1

3. For each cross edge (u, v), v.dist = u.dist) or v.dist = u.dist+ 1)

(ii) Prove that in the BFS of a digraph

1. There are no forward edges

2. For each tree edge we have v.dist = u.dist + 1

3. For each cross edge (u, v) we have v.dist ≤ u.dist + 1

4. For each back edge (u, v) we have 0 ≤ v.dist ≤ u.dist.

2.12 HW (4 points) (Strongly connected) Recall that a digraph is
strongly connected if every vertex is accessible from every vertex. De-
cide in linear time whether or not a digraph is strongly connected.

3

Do NOT use DFS. You may use BSF. Your algorithm should be very
simple.

2.13 DO (DFS counterexample) Draw a counterexample to the conjec-
ture that if a directed graph G contains a path from u to v, and if
u.d < v.d in a DFS of G then v is a descendant of u in the DFS tree
produced.

2.14 HW (4 points) (DFS counterexample) Draw a counterexample
to the conjecture that if a digraph G contains a directed path from
vertex u to vertex v then any depth-first search must result in v.d ≤
u.f . Make sure to label the vertices (assign the numbers 1, . . . , |V |
to them). Indicate the discover and finish time of each vertex. Make
your example as small (have as few edges) as possible. Do not prove
that it is smallest.

2.15 (DFS without long paths)

(a) DO: Let G = (V,E) be a connected undirected graph and u ∈ V .
Give a counterexample to the conjecture that the DFS tree con-
structed by DFS-VISIT(G, u) will include a longest path starting
from u. Make sure to label the vertices.

(b) XC (7 points) For infinitely many values of n construct an
undirected graph G with n vertices (appropriately numbered)
such that G is Hamiltonian (has a Hamilton cycle) but the length
of the longest path in a DFS tree is only O(log n).

2.16 HW (4 points) (Alternating paths) Consider a digraph G =
(V,E) whose edges are marked red or blue. An alternating path is
a path whose edges alternate in color (red-blue-red-. . . , or blue-red-
blue-. . .). The alteranting distance from vertex u to vertex v is the
length of the shortest alternating path from u to v. Determine in linear
time the alternating distance from a source vertex s to all vertices.

2.17 DO (Counting alternating paths) Consider a DAG (directed acyclic
graph) G = (V,E) whose edges are marked red or blue. For u ∈ V , let
A[u] be the number of alternating paths starting at u. In linear time,
compute the array A.

2.18 DO (Longest path in DAG) In a DAG (directed acyclic graph),
find a longest path in linear time.

4

2.19 HW (6 points) (All-ones squares) Given an n×n array A of zeros
and ones, find the maximum size of a contiguous square of all ones.
(You do not need to locate such a largest all-ones square, just deter-
mine its size.) Solve this problem in linear time. “Linear time” means
the number of steps must be O(size of the input). In the present prob-
lem, the size of the input is O(n2). Manipulating integers between 0
and n counts as one step; such manipulation includes copying, incre-
menting, addition and subtraction, looking up an entry in an n × n
array. Name the method used.

The pseudocode should be very simple, no more than a few lines.
Elegance counts.

Example:

1 0 1 1 0 1
1 1 0 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 1 1

In this example, the answer is 3. There are three contiguous 3 × 3
square subarrays of all-ones. One is indicated below by underlines,
another is shown in a box, the third one is indicated by Italics.

1 0
1 1

1 1 0
0 1 1

1
1

1 0
1 1
1 1

1 1 1
1 1 1
1 1 1

1
1
0

1 1 1 0 1 1

5

