
Algorithms – CMSC-27200
http://alg15.cs.uchicago.edu

Homework set #1 due January 14, 2015

Read the homework instructions on the website. The instructions
that follow here are only an incomplete summary.

Hand in your solutions to problems marked “HW.” Do not hand in prob-
lems marked “DO.” If you hand in homework marked “XC” (extra credit),
do so on separate and separately stapled sheets. Print your name on ev-
ery sheet you submit. We ask you to use LaTeX to typeset your solutions;
starting January 25, this will be required. Hand in your solutions on pa-
per, do not email. Carefully study the policy (stated on the website) on
collaboration, internet use, and academic integrity.

1.1 DO: Review asymptotic notation from Discrete Math.
Recall the notion of asymptotic equality: Let an and bn be sequences
of real numbers. We say that these sequences are asymptotically equal
(notation: an ∼ bn) if

lim
n→∞

an
bn

= 1.

Prove:

(a) n2 − 3n cosn+ 1000 ∼ n2

(b)
√
n+ 1−

√
n ∼ 1/(2

√
n)

(c) ln(1 + 1/n) ∼ 1/n

1.2 HW (2+2 points): Let b(n) denote the number of binary digits of
the positive integer n and let d(n) denote the number of its decimal
digits. (To make this definition unique, no initial zeros are allowed
in this problem.) (a) Give a simple exact formula for b(n) using the
logarithm function and rounding. (b) Prove the asymptotic relation
b(n) = Θ(d(n)).

1.3 HW (2+3 points): Let an and bn be sequences of real numbers
greater than 1. Consider the following two statements:

(A) an = Θ(bn)

(B) ln an ∼ ln bn

Prove:

(i) (B) does not follow from (A). (Give a counterexample.)

1

http://alg15.cs.uchicago.edu

(ii) (B) does follow from (A) if we make the stronger assumption that
an →∞.

1.4 DO [binary search]: Let A[1 . . . n] be a (0, 1)-array (every entry is 0 or
1). Assume A[1] = 0 and A[n] = 1. Design an algorithm that finds a
value i such that A[i] = 0 and A[i + 1] = 1 (1 ≤ i ≤ n − 1). You can

access the array by making queries of the form A[i]
?
= 0; each query

carries unit cost; all other operations are free. Your goal is to minimize
the cost. Your algorithm should work with cost log2 n+O(1). Describe
your algorithm in clear pseudocode.

1.5 DO: Recall the notion of divisibility : we say that the integer d divides
the integer n (in notation, d | n), if there exists an integer x such that
dx = n. If this is the case, we say d is a divisor of n and n is a multiple
of d.

(a) What are the multiples of (a1) d = 0 (a2) d = 1 (a3) d = −1 (a4)
d = ±2 ?

(b) What are the divisors of (b1) n = 1 (b2) n = 0 (b3) n = −6 ?

(c) True or false: 0 | 0.

(d) Prove: if d | a and d | b then d | a± b.
(e) Prove: if a and b have the same divisors then a = ±b.
(f) Prove: if a | b and b | a then a = ±b.
(g) Prove: if a and b have the same divisors then a = ±b.
(h) Prove: if a and b have the same multiples then a = ±b.
(i) Prove: the number of positive divisors of the positive integer n is

less than 2
√
n.

1.6 DO: Let a, b,m be integers. We say that a is congruent to b modulo
m (in notation: a ≡ b (mod m)) if m | a− b. For instance,
8 ≡ 73 (mod 13).

(a) Prove: day k and day ` of a given month fall on the same day
of the week if and only if k ≡ ` (mod 7). (This is why modular
arithmetic, the arithmetic of numbers modulo a given number, is
also referred to as calendar arithmetic.)

(b) If today is Thursday then what day of the week will be 100 days
from now? Note that 100 ≡ 2 (mod 7). How is this observation
relevant to the question?

2

(c) Review the notion of equivalence relations and equivalence classes
from Discrete Mathematics.

(d) Prove: for any fixed m, the relation two integers are congruent
modulo m is an equivalence relation. The equivalence classes cor-
responding to congruence modulo m are called modulo m residue
classes. So two numbers a and b belong to the same modulo m
residue class precisely if a ≡ b (mod m).

(e) What are the residue classes modulo 2 ? What is the number of
residue classes modulo m ?

(f) Prove: if a ≡ b (mod m) and c ≡ d (mod m) then
a± b ≡ c± d (mod m) and ab ≡ cd (mod m).

(g) Prove: if a ≡ b (mod m) then gcd(a,m) = gcd(b,m).

(h) For what values of m is the following statement true for all a and
b: “If ab ≡ 0 (mod m) then a ≡ 0 (mod m) or b ≡ 0 (mod m).”

1.7 DO: Prove Fermat’s little Theorem: If p is a prime number then for
every a we have ap ≡ a (mod p).
Hint: Assume a > 0 and suppose we have an unlimited supply of beads
of a colors. (The beads are identical except for their color.) Count the
types of necklaces with p beads we can make. Two necklaces count as
being of the same “type” if one is a cyclic rotation of the other.

1.8 DO: Recall the communication complexity problem discussed in class.
Use variables where we used specific numbers. When talking about k-
bit itegers, we permit initial zeros, so strictly speaking, we are talking
about integers with ≤ k bits, i. e., integers between 0 and 2k − 1.

Here is the setup.

Two processors, Alice and Bob, possess a string of n bits each; Alice’s
string is X, Bob’s string is Y . The problem is to determine whether
or not X = Y with minimum number of bits communicated between
Alice and Bob. The randomized protocol discussed in class to solve
this problem efficiently depends on the choice of a parameter k and
proceeds in the following steps:

1. Alice generates a k-bit prime, chosen uniformly at random from
among all k-bit prime numbers. (Each k-bit prime has the same
probability to be selected.)

2. Alice calculates the quantity (X mod p), the remainder of the
division of X (an n-bit integer) by p. Note that this remainder
has at most k bits.

3

3. Alice sends p and (X mod p) to Bob.

4. Bob calculates (Y mod p).

5. If (X mod p) 6= (Y mod p), i. e., if X 6≡ Y (mod p), then Bob
says “NOT EQUAL.” Else, Bob says “YES, EQUAL.”

The cost of this protocol is at most 2k bits of communication (step 3);
the cost of local computation by either Alice or Bob is ignored in the
“communication complexity” model. We need to show that even for
quite small values of k, Bob is not likely to make an error.

(a) Let Z be an n-bit non-zero integer. Let p(Z) denote the number
of distinct primes dividing Z. Prove: p(Z) < n.

(b) XC (4 points): Prove: p(Z) . n/ log2 n. Here an . bn means
an ∼ min{an, bn}. Use the following fact, which is equivalent to
the Prime Number Theorem: Let s(x) =

∑
p≤x log p where the

summation is over all primes p ≤ x. Then s(x) ∼ x.

(c) Let R denote the probability that Bob’s conclusion is wrong. Use
(a) to prove that R = O(kn/2k).

(d) Use (b) to prove that R = O(n/2k).

(e) Given an error-tolerance parameter ε > 0, use (d) to recommend
a value of k as a function of n such that R ≤ ε. Make k as small
as you can.

1.9 HW (6 points): Consider the situation that Bob declared “NOT
EQUAL.” At this point Alice possesses the n-bit integer X, Bob the
n-bit integer Y , both of them have the k-bit prime p and the k-bit
integer (X mod p) and they know that X 6≡ Y (mod p).

Devise a deterministic protocol which uses O(k log n) bits of commu-
nication and finds a position i such that X[i] 6= Y [i]. (X[i] denotes
the i-th bit of X.) Describe your protocol in pseudocode. Prove that
it works within the stated amount of communication. Do not make
assumptions on the value of k relative to n.

1.10 HW (8 points): In class we solved the Knapsack problem with inte-
ger weights in O(nW) operations where n is the number of items and
W is the weight limit. Solve the Knapsack problem under the assump-
tion that the values are integers (but the weights are real numbers) in
O(nV) operations where V is the total value of all items. Describe your
solution is pseudocode. Use dynamic programming. Half the credit

4

goes for a clear definition of the array of problems you are solving (the
“brain” of the solution).

1.11 DO: Recall Strling’s formula:

n! ∼
(n

e

)n√
2πn.

Use Stirling’s formula to show that log(n!) ∼ n log n. Here “log” refers
to base-2 logarithms but the same holds for logarithms to any base.

1.12 DO: Prove that log(n!) ∼ n log n without using Stirling’s formula,
taking the following steps.

(a) Prove: log(n!) ≤ n log n for all n ≥ 1.

(b) Prove: for all k in the range 1 ≤ k ≤ n we have n! ≥ kn−k.

(c) Find a sequence of values kn such that

log(kn−knn) ∼ n log n.

1.13 DO: Consider the n-th row of the Pascal triangle:
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
.

Prove that this sequence increases until the middle and then decreases.

1.14 DO: Prove that there exist constants c, d such that(
2n
n

)
4n
∼ cnd.

Determine the values of c and d. (Hint: Use Stirling’s formula.)

1.15 DO Exponential growth beats polynomial growth: Let c, d > 0
be constants. Prove: nd = o((1 + c)n). Infer that for all sufficiently
large n we have nd < (1 + c)n.
(Recall the little-oh notation: for two sequences an, bn we say that
an = o(bn) if limn→∞ an/bn = 0.)

1.16 DO: Recall the Prime Number Theorem (PNT):

π(x) ∼ x

lnx

where π(x) denotes the number of primes ≤ x.
(So, for instance, π(10) = 4, π(100) = 25, π(π) = 2.)
Let us write down a random (0, 1)-string x of length 100. Let us
interpret x as a number in binary. Estimate the probability that x is
prime, using the PNT. (Assume that 2100 is “sufficiently large.”)

5

